Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Genes Dev ; 28(18): 2027-40, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25228646

RESUMEN

Nuclear DNA in the male gamete of sexually reproducing animals is organized as sperm chromatin compacted primarily by sperm-specific protamines. Fertilization leads to sperm chromatin remodeling, during which protamines are expelled and replaced by histones. Despite our increased understanding of the factors that mediate nucleosome assembly in the nascent male pronucleus, the machinery for protamine removal remains largely unknown. Here we identify four Drosophila protamine chaperones that mediate the dissociation of protamine-DNA complexes: NAP-1, NLP, and nucleophosmin are previously characterized histone chaperones, and TAP/p32 has no known function in chromatin metabolism. We show that TAP/p32 is required for the removal of Drosophila protamine B in vitro, whereas NAP-1, NLP, and Nph share roles in the removal of protamine A. Embryos from P32-null females show defective formation of the male pronucleus in vivo. TAP/p32, similar to NAP-1, NLP, and Nph, facilitates nucleosome assembly in vitro and is therefore a histone chaperone. Furthermore, mutants of P32, Nlp, and Nph exhibit synthetic-lethal genetic interactions. In summary, we identified factors mediating protamine removal from DNA and reconstituted in a defined system the process of sperm chromatin remodeling that exchanges protamines for histones to form the nucleosome-based chromatin characteristic of somatic cells.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fertilización/fisiología , Neuropéptidos/metabolismo , Proteínas Nucleares/metabolismo , Nucleoplasminas/metabolismo , Proteína 1 de Ensamblaje de Nucleosomas/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Chaperonas de Histonas/metabolismo , Masculino , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Neuropéptidos/genética , Proteínas Nucleares/genética , Nucleofosmina , Nucleoplasminas/genética , Proteína 1 de Ensamblaje de Nucleosomas/genética , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espermatozoides/metabolismo , Factores de Transcripción/genética
2.
Genes Dev ; 26(6): 603-14, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22426536

RESUMEN

SNF2-like motor proteins, such as ISWI, cooperate with histone chaperones in the assembly and remodeling of chromatin. Here we describe a novel, evolutionarily conserved, ISWI-containing complex termed ToRC (Toutatis-containing chromatin remodeling complex). ToRC comprises ISWI, Toutatis/TIP5 (TTF-I-interacting protein 5), and the transcriptional corepressor CtBP (C-terminal-binding protein). ToRC facilitates ATP-dependent nucleosome assembly in vitro. All three subunits are required for its maximal biochemical activity. The toutatis gene exhibits strong synthetic lethal interactions with CtBP. Thus, ToRC mediates, at least in part, biological activities of CtBP and Toutatis. ToRC subunits colocalize in euchromatic arms of polytene chromosomes. Furthermore, nuclear localization and precise distribution of ToRC in chromosomes are dependent on CtBP. ToRC is involved in CtBP-mediated regulation of transcription by RNA polymerase II in vivo. For instance, both Toutatis and CtBP are required for repression of genes of a proneural gene cluster, achaete-scute complex (AS-C), in Drosophila larvae. Intriguingly, native C-terminally truncated Toutatis isoforms do not associate with CtBP and localize predominantly to the nucleolus. Thus, Toutatis forms two alternative complexes that have differential distribution and can participate in distinct aspects of nuclear DNA metabolism.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/genética , Oxidorreductasas de Alcohol/genética , Animales , Núcleo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Factores de Transcripción/genética
3.
Elife ; 112022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36458689

RESUMEN

Asynchronous replication of chromosome domains during S phase is essential for eukaryotic genome function, but the mechanisms establishing which domains replicate early versus late in different cell types remain incompletely understood. Intercalary heterochromatin domains replicate very late in both diploid chromosomes of dividing cells and in endoreplicating polytene chromosomes where they are also underreplicated. Drosophila SNF2-related factor SUUR imparts locus-specific underreplication of polytene chromosomes. SUUR negatively regulates DNA replication fork progression; however, its mechanism of action remains obscure. Here, we developed a novel method termed MS-Enabled Rapid protein Complex Identification (MERCI) to isolate a stable stoichiometric native complex SUMM4 that comprises SUUR and a chromatin boundary protein Mod(Mdg4)-67.2. Mod(Mdg4) stimulates SUUR ATPase activity and is required for a normal spatiotemporal distribution of SUUR in vivo. SUUR and Mod(Mdg4)-67.2 together mediate the activities of gypsy insulator that prevent certain enhancer-promoter interactions and establish euchromatin-heterochromatin barriers in the genome. Furthermore, SuUR or mod(mdg4) mutations reverse underreplication of intercalary heterochromatin. Thus, SUMM4 can impart late replication of intercalary heterochromatin by attenuating the progression of replication forks through euchromatin/heterochromatin boundaries. Our findings implicate a SNF2 family ATP-dependent motor protein SUUR in the insulator function, reveal that DNA replication can be delayed by a chromatin barrier, and uncover a critical role for architectural proteins in replication control. They suggest a mechanism for the establishment of late replication that does not depend on an asynchronous firing of late replication origins.


Inside cells, molecules of DNA provide the instructions needed to make proteins. Cells carefully maintain and repair their DNA, and typically make a complete copy of the genome before they divide to ensure that after division, each daughter cell has a full set. Within human, fly and other eukaryotic nuclei, DNA is packaged into structures known as chromosomes. Cells follow precisely controlled programs to replicate distinct regions of chromosomes at different times. To start copying a particular region, the cell machinery that replicates DNA binds to a sequence known as the origin of replication. It is thought that as-yet unknown cues from the cell may lead the replication machinery to bind to different origins of replication at different times. In some circumstances, cells make extra copies of their DNA without dividing. For example, many cells in the larvae of fruit flies contain hundreds of extra DNA copies to sustain their increased sizes. However, the entire genome is not copied during this process, so cells end up with more copies of some regions of the genome than others. A protein called SUUR is required for hindering the replication of the 'underrepresented' regions, but it is not clear how it works. To address this question, Andreyeva, Emelyanov et al. developed a new approach based on liquid chromatography and quantitative proteomics to identify the native form of SUUR in fruit flies. This revealed that SUUR exists as a stable complex with a protein called Mod(Mdg4), which is needed to recruit SUUR to the chromosomes. Further experiments suggested that SUUR and Mod(Mdg4) work together to bind to regions of DNA known as gypsy insulator elements, creating a physical barrier that hinders the replication machinery from accessing some parts of the genome. The findings of Andreyeva, Emelyanov et al. provide an alternative explanation for how individual cells may stagger the process of copying their DNA without relying on the replication machinery binding to various replication origins at different times. Rather, late replication timing may be instructed by an insulator-born delay of the progression of replication over particular genomic regions. This mechanism adds to the list of nuclear processes (chromosome partitioning, transcriptional regulation, etc.) that are known to be directed by insulators and associated architectural proteins.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Unión al ADN/metabolismo , Heterocromatina/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Eucromatina/metabolismo , Cromatina/genética , Cromatina/metabolismo , Replicación del ADN
4.
J Biol Chem ; 285(20): 15027-15037, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20154359

RESUMEN

ATRX belongs to the family of SWI2/SNF2-like ATP-dependent nucleosome remodeling molecular motor proteins. Mutations of the human ATRX gene result in a severe genetic disorder termed X-linked alpha-thalassemia mental retardation (ATR-X) syndrome. Here we perform biochemical and genetic analyses of the Drosophila melanogaster ortholog of ATRX. The loss of function allele of the Drosophila ATRX/XNP gene is semilethal. Drosophila ATRX is expressed throughout development in two isoforms, p185 and p125. ATRX185 and ATRX125 form distinct multisubunit complexes in fly embryo. The ATRX185 complex comprises p185 and heterochromatin protein HP1a. Consistently, ATRX185 but not ATRX125 is highly concentrated in pericentric beta-heterochromatin of the X chromosome in larval cells. HP1a strongly stimulates biochemical activities of ATRX185 in vitro. Conversely, ATRX185 is required for HP1a deposition in pericentric beta-heterochromatin of the X chromosome. The loss of function allele of the ATRX/XNP gene and mutant allele that does not express p185 are strong suppressors of position effect variegation. These results provide evidence for essential biological functions of Drosophila ATRX in vivo and establish ATRX as a major determinant of pericentric beta-heterochromatin identity.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , ADN Helicasas/metabolismo , Proteínas de Drosophila/metabolismo , Heterocromatina/metabolismo , Animales , Western Blotting , Homólogo de la Proteína Chromobox 5 , ADN Helicasas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Electroforesis en Gel de Poliacrilamida , Mutación , Unión Proteica , Cromosoma X
5.
Sci Rep ; 6: 34354, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27687115

RESUMEN

Metazoan linker histones are essential for development and play crucial roles in organization of chromatin, modification of epigenetic states and regulation of genetic activity. Vertebrates express multiple linker histone H1 isoforms, which may function redundantly. In contrast, H1 isoforms are not present in Dipterans, including D. melanogaster, except for an embryo-specific, distantly related dBigH1. Here we show that Drosophila BEN domain protein Elba2, which is expressed in early embryos and was hypothesized to have insulator-specific functions, can compensate for the loss of H1 in vivo. Although the Elba2 gene is not essential, its mutation causes a disruption of normal internucleosomal spacing of chromatin and reduced nuclear compaction in syncytial embryos. Elba2 protein is distributed ubiquitously in polytene chromosomes and strongly colocalizes with H1. In H1-depleted animals, ectopic expression of Elba2 rescues the increased lethality and ameliorates abnormalities of chromosome architecture and heterochromatin functions. We also demonstrate that ectopic expression of BigH1 similarly complements the deficiency of H1 protein. Thus, in organisms that do not express redundant H1 isoforms, the structural and biological functions performed by canonical linker histones in later development, may be shared in early embryos by weakly homologous proteins, such as BigH1, or even unrelated, non-homologous proteins, such as Elba2.

6.
G3 (Bethesda) ; 5(4): 677-87, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25628309

RESUMEN

Chromatin structure and activity can be modified through ATP-dependent repositioning of nucleosomes and posttranslational modifications of core histone tails within nucleosome core particles and by deposition of linker histones into the oligonucleosome fiber. The linker histone H1 is essential in metazoans. It has a profound effect on organization of chromatin into higher-order structures and on recruitment of histone-modifying enzymes to chromatin. Here, we describe a genetic screen for modifiers of the lethal phenotype caused by depletion of H1 in Drosophila melanogaster. We identify 41 mis-expression alleles that enhance and 20 that suppress the effect of His1 depletion in vivo. Most of them are important for chromosome organization, transcriptional regulation, and cell signaling. Specifically, the reduced viability of H1-depleted animals is strongly suppressed by ubiquitous mis-expression of the ATP-dependent chromatin remodeling enzyme CHD1. Comparison of transcript profiles in H1-depleted and Chd1 null mutant larvae revealed that H1 and CHD1 have common transcriptional regulatory programs in vivo. H1 and CHD1 share roles in repression of numerous developmentally regulated and extracellular stimulus-responsive transcripts, including immunity-related and stress response-related genes. Thus, linker histone H1 participates in various regulatory programs in chromatin to alter gene expression.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila/genética , Drosophila/metabolismo , Regulación de la Expresión Génica , Histonas/genética , Factores de Transcripción/genética , Alelos , Animales , Cromatina/fisiología , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Perfilación de la Expresión Génica , Genotipo , Histonas/antagonistas & inhibidores , Histonas/metabolismo , Larva/metabolismo , Interferencia de ARN , ARN Bicatenario/metabolismo , Temperatura , Factores de Transcripción/metabolismo
7.
Science ; 317(5841): 1087-90, 2007 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-17717186

RESUMEN

The organization of chromatin affects all aspects of nuclear DNA metabolism in eukaryotes. H3.3 is an evolutionarily conserved histone variant and a key substrate for replication-independent chromatin assembly. Elimination of chromatin remodeling factor CHD1 in Drosophila embryos abolishes incorporation of H3.3 into the male pronucleus, renders the paternal genome unable to participate in zygotic mitoses, and leads to the development of haploid embryos. Furthermore, CHD1, but not ISWI, interacts with HIRA in cytoplasmic extracts. Our findings establish CHD1 as a major factor in replacement histone metabolism in the nucleus and reveal a critical role for CHD1 in the earliest developmental instances of genome-scale, replication-independent nucleosome assembly. Furthermore, our results point to the general requirement of adenosine triphosphate (ATP)-utilizing motor proteins for histone deposition in vivo.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Histonas/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/genética , Drosophila/embriología , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrión no Mamífero/fisiología , Desarrollo Embrionario , Femenino , Haploidia , Chaperonas de Histonas , Masculino , Mutación , Nucleosomas/metabolismo , Protaminas/metabolismo , Espermatozoides/fisiología , Factores de Transcripción/genética , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA