Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 17(7): e1009654, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34242211

RESUMEN

It is a conventionally held dogma that the genetic basis underlying development is conserved in a long evolutionary time scale. Ample experiments based on mutational, biochemical, functional, and complementary knockdown/knockout approaches have revealed the unexpectedly important role of recently evolved new genes in the development of Drosophila. The recent progress in the genome-wide experimental testing of gene effects and improvements in the computational identification of new genes (< 40 million years ago, Mya) open the door to investigate the evolution of gene essentiality with a phylogenetically high resolution. These advancements also raised interesting issues in techniques and concepts related to phenotypic effect analyses of genes, particularly of those that recently originated. Here we reported our analyses of these issues, including reproducibility and efficiency of knockdown experiment and difference between RNAi libraries in the knockdown efficiency and testing of phenotypic effects. We further analyzed a large data from knockdowns of 11,354 genes (~75% of the Drosophila melanogaster total genes), including 702 new genes (~66% of the species total new genes that aged < 40 Mya), revealing a similarly high proportion (~32.2%) of essential genes that originated in various Sophophora subgenus lineages and distant ancestors beyond the Drosophila genus. The transcriptional compensation effect from CRISPR knockout were detected for highly similar duplicate copies. Knockout of a few young genes detected analogous essentiality in various functions in development. Taken together, our experimental and computational analyses provide valuable data for detection of phenotypic effects of genes in general and further strong evidence for the concept that new genes in Drosophila quickly evolved essential functions in viability during development.


Asunto(s)
Evolución Molecular , Duplicación de Gen/genética , Genes Esenciales/genética , Animales , Evolución Biológica , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Técnicas de Silenciamiento del Gen/métodos , Genómica , Genotipo , Modelos Genéticos , Mutación , Fenotipo , Filogenia , Reproducibilidad de los Resultados
2.
Genome Res ; 29(7): 1115-1122, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31221725

RESUMEN

New genes are a major source of novelties, and a disproportionate amount of them are known to show testis expression in later phases of male gametogenesis in different groups such as mammals and plants. Here, we propose that this enhanced expression is a consequence of haploid selection during the latter stages of male gametogenesis. Because emerging adaptive mutations will be fixed faster if their phenotypes are expressed by haploid rather than diploid genotypes, new genes with advantageous functions arising during this unique stage of development have a better chance to become fixed. To test this hypothesis, expression levels of genes of differing evolutionary age were examined at various stages of Drosophila spermatogenesis. We found, consistent with a model based on haploid selection, that new Drosophila genes are both expressed in later haploid phases of spermatogenesis and harbor a significant enrichment of adaptive mutations. Additionally, the observed overexpression of new genes in the latter phases of spermatogenesis was limited to the autosomes. Because all male cells exhibit hemizygous expression for X-linked genes (and therefore effectively haploid), there is no expectation that selection acting on late spermatogenesis will have a different effect on X-linked genes in comparison to initial diploid phases. Together, our proposed hypothesis and the analyzed data suggest that natural selection in haploid cells elucidates several aspects of the origin of new genes by explaining the general prevalence of their testis expression, and a parsimonious solution for new alleles to avoid being lost by genetic drift or pseudogenization.


Asunto(s)
Evolución Molecular , Haploidia , Selección Genética , Espermatogénesis/genética , Animales , Drosophila , Mutación de Línea Germinal , Masculino , Modelos Genéticos , Testículo/metabolismo , Cromosoma X
3.
Annu Rev Genet ; 47: 307-33, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24050177

RESUMEN

Genes are perpetually added to and deleted from genomes during evolution. Thus, it is important to understand how new genes are formed and how they evolve to be critical components of the genetic systems that determine the biological diversity of life. Two decades of effort have shed light on the process of new gene origination and have contributed to an emerging comprehensive picture of how new genes are added to genomes, ranging from the mechanisms that generate new gene structures to the presence of new genes in different organisms to the rates and patterns of new gene origination and the roles of new genes in phenotypic evolution. We review each of these aspects of new gene evolution, summarizing the main evidence for the origination and importance of new genes in evolution. We highlight findings showing that new genes rapidly change existing genetic systems that govern various molecular, cellular, and phenotypic functions.


Asunto(s)
Evolución Molecular , Genes , Animales , Encéfalo/embriología , Drosophila melanogaster/genética , Predicción , Dosificación de Gen , Duplicación de Gen , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Transferencia de Gen Horizontal , Genes de Insecto , Genes de Plantas , Estructuras Genéticas , Humanos , Mamíferos/genética , Modelos Genéticos , Fenotipo , Filogenia , ARN no Traducido/fisiología , Recombinación Genética , Selección Genética , Caracteres Sexuales , Transcripción Genética
4.
Genome Res ; 24(4): 629-38, 2014 04.
Artículo en Inglés | MEDLINE | ID: mdl-24407956

RESUMEN

Recent studies have revealed key roles of noncoding RNAs in sex-related pathways, but little is known about the evolutionary forces acting on these noncoding RNAs. Profiling the transcriptome of Drosophila melanogaster with whole-genome tiling arrays found that 15% of male-biased transcribed fragments are intergenic noncoding RNAs (incRNAs), suggesting a potentially important role for incRNAs in sex-related biological processes. Statistical analysis revealed a paucity of male-biased incRNAs and coding genes on the X chromosome, suggesting that similar evolutionary forces could be affecting the genomic organization of both coding and noncoding genes. Expression profiling across germline and somatic tissues further suggested that both male meiotic sex chromosome inactivation (MSCI) and sexual antagonism could contribute to the chromosomal distribution of male-biased incRNAs. Comparative sequence analysis showed that the evolutionary age of male-biased incRNAs is a significant predictor of their chromosomal locations. In addition to identifying abundant sex-biased incRNAs in the fly genome, our work unveils a global picture of the complex interplay between noncoding RNAs and sexual chromosome evolution.


Asunto(s)
Drosophila melanogaster/genética , Genes Ligados a X/genética , ARN no Traducido/genética , Caracteres Sexuales , Animales , ADN Intergénico/genética , Femenino , Genoma de los Insectos , Masculino , Meiosis/genética , Cromosoma X/genética , Inactivación del Cromosoma X/genética
5.
EMBO J ; 31(12): 2798-809, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22543869

RESUMEN

New genes originate frequently across diverse taxa. Given that genetic networks are typically comprised of robust, co-evolved interactions, the emergence of new genes raises an intriguing question: how do new genes interact with pre-existing genes? Here, we show that a recently originated gene rapidly evolved new gene networks and impacted sex-biased gene expression in Drosophila. This 4-6 million-year-old factor, named Zeus for its role in male fecundity, originated through retroposition of a highly conserved housekeeping gene, Caf40. Zeus acquired male reproductive organ expression patterns and phenotypes. Comparative expression profiling of mutants and closely related species revealed that Zeus has recruited a new set of downstream genes, and shaped the evolution of gene expression in germline. Comparative ChIP-chip revealed that the genomic binding profile of Zeus diverged rapidly from Caf40. These data demonstrate, for the first time, how a new gene quickly evolved novel networks governing essential biological processes at the genomic level.


Asunto(s)
Drosophila/genética , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Animales , Drosophila/fisiología , Evolución Molecular , Fertilidad , Perfilación de la Expresión Génica
6.
PLoS Biol ; 9(10): e1001179, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22028629

RESUMEN

How the human brain evolved has attracted tremendous interests for decades. Motivated by case studies of primate-specific genes implicated in brain function, we examined whether or not the young genes, those emerging genome-wide in the lineages specific to the primates or rodents, showed distinct spatial and temporal patterns of transcription compared to old genes, which had existed before primate and rodent split. We found consistent patterns across different sources of expression data: there is a significantly larger proportion of young genes expressed in the fetal or infant brain of humans than in mouse, and more young genes in humans have expression biased toward early developing brains than old genes. Most of these young genes are expressed in the evolutionarily newest part of human brain, the neocortex. Remarkably, we also identified a number of human-specific genes which are expressed in the prefrontal cortex, which is implicated in complex cognitive behaviors. The young genes upregulated in the early developing human brain play diverse functional roles, with a significant enrichment of transcription factors. Genes originating from different mechanisms show a similar expression bias in the developing brain. Moreover, we found that the young genes upregulated in early brain development showed rapid protein evolution compared to old genes also expressed in the fetal brain. Strikingly, genes expressed in the neocortex arose soon after its morphological origin. These four lines of evidence suggest that positive selection for brain function may have contributed to the origination of young genes expressed in the developing brain. These data demonstrate a striking recruitment of new genes into the early development of the human brain.


Asunto(s)
Evolución Biológica , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Genoma Humano , Animales , Humanos , Ratones , Selección Genética , Sintenía , Transcriptoma , Regulación hacia Arriba
7.
Bioessays ; 34(11): 982-91, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23001763

RESUMEN

New genes have frequently formed and spread to fixation in a wide variety of organisms, constituting abundant sets of lineage-specific genes. It was recently reported that an excess of primate-specific and human-specific genes were upregulated in the brains of fetuses and infants, and especially in the prefrontal cortex, which is involved in cognition. These findings reveal the prevalent addition of new genetic components to the transcriptome of the human brain. More generally, these findings suggest that genomes are continually evolving in both sequence and content, eroding the conservation endowed by common ancestry. Despite increasing recognition of the importance of new genes, we highlight here that these genes are still seriously under-characterized in functional studies and that new gene annotation is inconsistent in current practice. We propose an integrative approach to annotate new genes, taking advantage of functional and evolutionary genomic methods. We finally discuss how the refinement of new gene annotation will be important for the detection of evolutionary forces governing new gene origination.


Asunto(s)
Encéfalo/metabolismo , Evolución Molecular , Regulación de la Expresión Génica , Genoma Humano/genética , Anotación de Secuencia Molecular , Animales , Humanos , Sistemas de Lectura Abierta/genética
8.
Genome Res ; 20(11): 1526-33, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20798392

RESUMEN

We investigated the correlation between the chromosomal location and age distribution of new male-biased genes formed by duplications via DNA intermediates (DNA-level) or by de novo origination in Drosophila. Our genome-wide analysis revealed an excess of young X-linked male-biased genes. The proportion of X-linked male-biased genes then diminishes through time, leading to an autosomal excess of male-biased genes. The switch between X-linked and autosomal enrichment of male-biased genes was also present in the distribution of both protein-coding genes on the D. pseudoobscura neo-X chromosome and microRNA genes of D. melanogaster. These observations revealed that the evolution of male-biased genes is more complicated than the previously detected one-step X→A gene traffic and the enrichment of the male-biased genes on autosomes. The pattern we detected suggests that the interaction of various evolutionary forces such as the meiotic sex chromosome inactivation (MSCI), faster-X effect, and sexual antagonism in the male germline might have shaped the chromosomal distribution of male-biased genes on different evolutionary time scales.


Asunto(s)
Envejecimiento/genética , Mapeo Cromosómico , Drosophila/genética , Genes de Insecto , Genes Ligados a X/genética , Factores de Edad , Animales , Mapeo Cromosómico/métodos , Evolución Molecular , Perfilación de la Expresión Génica , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Masculino , MicroARNs/genética , Análisis por Micromatrices , Filogenia , Caracteres Sexuales , Cromosoma X/genética
9.
PLoS Biol ; 8(10)2010 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-20957185

RESUMEN

Mammalian X chromosomes evolved under various mechanisms including sexual antagonism, the faster-X process, and meiotic sex chromosome inactivation (MSCI). These forces may contribute to nonrandom chromosomal distribution of sex-biased genes. In order to understand the evolution of gene content on the X chromosome and autosome under these forces, we dated human and mouse protein-coding genes and miRNA genes on the vertebrate phylogenetic tree. We found that the X chromosome recently acquired a burst of young male-biased genes, which is consistent with fixation of recessive male-beneficial alleles by sexual antagonism. For genes originating earlier, however, this pattern diminishes and finally reverses with an overrepresentation of the oldest male-biased genes on autosomes. MSCI contributes to this dynamic since it silences X-linked old genes but not X-linked young genes. This demasculinization process seems to be associated with feminization of the X chromosome with more X-linked old genes expressed in ovaries. Moreover, we detected another burst of gene originations after the split of eutherian mammals and opossum, and these genes were quickly incorporated into transcriptional networks of multiple tissues. Preexisting X-linked genes also show significantly higher protein-level evolution during this period compared to autosomal genes, suggesting positive selection accompanied the early evolution of mammalian X chromosomes. These two findings cast new light on the evolutionary history of the mammalian X chromosome in terms of gene gain, sequence, and expressional evolution.


Asunto(s)
Evolución Biológica , Mamíferos/genética , Cromosoma X/genética , Animales , Femenino , Perfilación de la Expresión Génica , Genes Ligados a X , Humanos , Masculino , Ratones , MicroARNs/genética , Filogenia , Espermatogénesis/genética
10.
BMC Biol ; 10: 49; author reply 50, 2012 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-22691264

RESUMEN

BACKGROUND: Meiotic sex chromosome inactivation (MSCI) during spermatogenesis has been proposed as one of the evolutionary driving forces behind both the under-representation of male-biased genes on, and the gene movement out of, the X chromosome in Drosophila. However, the relevance of MSCI in shaping sex chromosome evolution is controversial. Here we examine two aspects of a recent study on testis gene expression (Mikhaylova and Nurminsky, BMC Biol 2011, 9:29) that failed to support the MSCI in Drosophila. First, Mikhaylova and Nurminsky found no differences between X-linked and autosomal genes based on the transcriptional profiling of the early testis development, and thus concluded that MSCI does not occur in D. melanogaster. Second, they also analyzed expression data from several D. melanogaster tissues and concluded that under-representation on the X chromosome is not an exclusive property of testis-biased genes, but instead, a general property of tissue-specific genes. RESULTS: By re-analyzing the Mikhaylova and Nurminsky's testis data and the expression data on several D. melanogaster tissues, we made two major findings that refuted their original claims. First, the developmental testis data has generally greater experimental error than conventional analyses, which reduced significantly the power to detect chromosomal differences in expression. Nevertheless, our re-analysis observed significantly lower expression of the X chromosome in the genomic transcriptomes of later development stages of the testis, which is consistent with the MSCI hypothesis. Second, tissue-specific genes are also in general enriched with genes more expressed in testes than in ovaries, that is testis-biased genes. By completely excluding from the analyses the testis-biased genes, which are known to be under-represented in the X, we found that all the other tissue-specific genes are randomly distributed between the X chromosome and the autosomes. CONCLUSIONS: Our findings negate the original study of Mikhaylova and Nurminsky, which concluded a lack of MSCI and generalized the pattern of paucity in the X chromosome for tissue-specific genes in Drosophila. Therefore, MSCI and other selection-based models such as sexual antagonism, dosage compensation, and meiotic-drive continue to be viable models as driving forces shaping the genomic distribution of male-related genes in Drosophila.


Asunto(s)
Drosophila/genética , Regulación de la Expresión Génica , Genes Ligados a X , Inactivación del Cromosoma X , Cromosoma X , Animales , Masculino
11.
Mob DNA ; 14(1): 12, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684690

RESUMEN

BACKGROUND: Reverse-transcribed gene copies (retrocopies) have emerged as major sources of evolutionary novelty. MicroRNAs (miRNAs) are small and highly conserved RNA molecules that serve as key post-transcriptional regulators of gene expression. The origin and subsequent evolution of miRNAs have been addressed but not fully elucidated. RESULTS: In this study, we performed a comprehensive investigation of miRNA origination through retroduplicated mRNA sequences (retro-miRs). We identified 17 retro-miRs that emerged from the mRNA retrocopies. Four of these retro-miRs had de novo origins within retrocopied sequences, while 13 retro-miRNAs were located within exon regions and duplicated along with their host mRNAs. We found that retro-miRs were primate-specific, including five retro-miRs conserved among all primates and two human-specific retro-miRs. All retro-miRs were expressed, with predicted and experimentally validated target genes except miR-10527. Notably, the target genes of retro-miRs are involved in key biological processes such as metabolic processes, cell signaling, and regulation of neurotransmitters in the central nervous system. Additionally, we found that these retro-miRs play a potential oncogenic role in cancer by targeting key cancer genes and are overexpressed in several cancer types, including liver hepatocellular carcinoma and stomach adenocarcinoma. CONCLUSIONS: Our findings demonstrated that mRNA retrotransposition is a key mechanism for the generation of novel miRNAs (retro-miRs) in primates. These retro-miRs are expressed, conserved, have target genes with important cellular functions, and play important roles in cancer.

12.
BMC Evol Biol ; 12: 169, 2012 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-22950647

RESUMEN

BACKGROUND: Several studies in Drosophila have shown excessive movement of retrogenes from the X chromosome to autosomes, and that these genes are frequently expressed in the testis. This phenomenon has led to several hypotheses invoking natural selection as the process driving male-biased genes to the autosomes. Metta and Schlötterer (BMC Evol Biol 2010, 10:114) analyzed a set of retrogenes where the parental gene has been subsequently lost. They assumed that this class of retrogenes replaced the ancestral functions of the parental gene, and reported that these retrogenes, although mostly originating from movement out of the X chromosome, showed female-biased or unbiased expression. These observations led the authors to suggest that selective forces (such as meiotic sex chromosome inactivation and sexual antagonism) were not responsible for the observed pattern of retrogene movement out of the X chromosome. RESULTS: We reanalyzed the dataset published by Metta and Schlötterer and found several issues that led us to a different conclusion. In particular, Metta and Schlötterer used a dataset combined with expression data in which significant sex-biased expression is not detectable. First, the authors used a segmental dataset where the genes selected for analysis were less testis-biased in expression than those that were excluded from the study. Second, sex-biased expression was defined by comparing male and female whole-body data and not the expression of these genes in gonadal tissues. This approach significantly reduces the probability of detecting sex-biased expressed genes, which explains why the vast majority of the genes analyzed (parental and retrogenes) were equally expressed in both males and females. Third, the female-biased expression observed by Metta and Schlötterer is mostly found for parental genes located on the X chromosome, which is known to be enriched with genes with female-biased expression. Fourth, using additional gonad expression data, we found that autosomal genes analyzed by Metta and Schlötterer are less up regulated in ovaries and have higher chance to be expressed in meiotic cells of spermatogenesis when compared to X-linked genes. CONCLUSIONS: The criteria used to select retrogenes and the sex-biased expression data based on whole adult flies generated a segmental dataset of female-biased and unbiased expressed genes that was unable to detect the higher propensity of autosomal retrogenes to be expressed in males. Thus, there is no support for the authors' view that the movement of new retrogenes, which originated from X-linked parental genes, was not driven by selection. Therefore, selection-based genetic models remain the most parsimonious explanations for the observed chromosomal distribution of retrogenes.


Asunto(s)
Cromosomas de Insectos/genética , Drosophila/genética , Duplicación de Gen , Genes de Insecto/genética , Animales , Drosophila/clasificación , Femenino , Expresión Génica , Genes Ligados a X/genética , Masculino , Mutagénesis Insercional , Ovario/metabolismo , Retroelementos/genética , Transcripción Reversa , Selección Genética , Factores Sexuales , Testículo/metabolismo , Cromosoma X/genética
13.
Mol Biol Evol ; 28(10): 2823-32, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21546357

RESUMEN

Inverted duplicates (IDs) are pervasive in genomes and have been reported to play functional roles in various biological processes. However, the general underlying evolutionary forces that maintain IDs in genomes remain largely elusive. Through a systematic screening of the Drosophila melanogaster genome, 20,223 IDs were detected in nonrepetitive intergenic regions, far more than expectation under the neutrality model. 3,846 of these IDs were identified to have stable hairpin structure (i.e., the structural IDs). Based on whole-genome transcriptome profiling data, we found 628 unannotated expressed structural IDs, which had significantly different genomic distributions and structural properties from the unexpressed IDs. Among the expressed structural IDs, 130 exhibited higher expression in males than in females (i.e., male-biased expression). Compared with sex-unbiased ones, these male-biased IDs were significantly underrepresented on the X chromosome, similar to previously reported pattern of male-biased protein-coding genes. These analyses suggest that a selection-driven process, rather than a purely neutral mutation-driven mechanism, contributes to the maintenance of IDs in the Drosophila genome.


Asunto(s)
Drosophila melanogaster/genética , Evolución Molecular , Duplicación de Gen , Genes Ligados a X , Genoma de los Insectos , Inversión de Secuencia , Animales , ADN Intergénico , Femenino , Masculino , Meiosis , ARN no Traducido , Selección Genética , Inactivación del Cromosoma X
14.
J Mol Evol ; 74(3-4): 113-26, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22535494

RESUMEN

Previous studies on organisms with well-differentiated X and Y chromosomes, such as Drosophila and mammals, consistently detected an excess of genes moving out of the X chromosome and gaining testis-biased expression. Several selective evolutionary mechanisms were shown to be associated with this nonrandom gene traffic, which contributed to the evolution of the X chromosome and autosomes. If selection drives gene traffic, such traffic should also exist in species with Z and W chromosomes, where the females are the heterogametic sex. However, no previous studies on gene traffic in species with female heterogamety have found any nonrandom chromosomal gene movement. Here, we report an excess of retrogenes moving out of the Z chromosome in an organism with the ZW sex determination system, Bombyx mori. In addition, we showed that those "out of Z" retrogenes tended to have ovary-biased expression, which is consistent with the pattern of non-retrogene traffic recently reported in birds and symmetrical to the retrogene movement in mammals and fruit flies out of the X chromosome evolving testis functions. These properties of gene traffic in the ZW system suggest a general role for the heterogamety of sex chromosomes in determining the chromosomal locations and the evolution of sex-biased genes.


Asunto(s)
Bombyx/genética , Evolución Molecular , Genes de Insecto , Retroelementos , Cromosomas Sexuales , Animales , Distribución de Chi-Cuadrado , Femenino , Fenómenos Genéticos , Masculino , Modelos Genéticos , Método de Montecarlo , Ovario/metabolismo , Filogenia , Testículo/metabolismo
15.
Bioinformatics ; 27(13): 1749-53, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21551137

RESUMEN

MOTIVATION: Retrocopies are important genes in the genomes of almost all higher eukaryotes. However, the annotation of such genes is a non-trivial task. Intronless genes have often been considered to be retroposed copies of intron-containing paralogs. Such categorization relies on the implicit premise that alignable regions of the duplicates should be long enough to cover exon-exon junctions of the intron-containing genes, and thus intron loss events can be inferred. Here, we examined the alternative possibility that intronless genes could be generated by partial DNA-based duplication of intron-containing genes in the fruitfly genome. RESULTS: By building pairwise protein-, transcript- and genome-level DNA alignments between intronless genes and their corresponding intron-containing paralogs, we found that alignments do not cover exon-exon junctions in 40% of cases and thus no intron loss could be inferred. For these cases, the candidate parental proteins tend to be partially duplicated, and intergenic sequences or neighboring genes are included in the intronless paralog. Moreover, we observed that it is significantly less likely for these paralogs to show inter-chromosomal duplication and testis-dominant transcription, compared to the remaining 60% of cases with evidence of clear intron loss (retrogenes). These lines of analysis reveal that DNA-based duplication contributes significantly to the 40% of cases of single exon gene duplication. Finally, we performed an analogous survey in the human genome and the result is similar, wherein 34% of the cases do not cover exon-exon junctions. Thus, genome annotation for retrogene identification should discard candidates without clear evidence of intron loss. CONTACT: mlong@uchicago.edu; zhangy@uchicago.edu


Asunto(s)
Drosophila melanogaster/genética , Evolución Molecular , Duplicación de Gen , Animales , Exones , Humanos , Intrones , Masculino , Retroelementos , Análisis de Secuencia de ADN
16.
PLoS Genet ; 5(11): e1000731, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19936020

RESUMEN

In Drosophila, genes expressed in males tend to accumulate on autosomes and are underrepresented on the X chromosome. In particular, genes expressed in testis have been observed to frequently relocate from the X chromosome to the autosomes. The inactivation of X-linked genes during male meiosis (i.e., meiotic sex chromosome inactivation-MSCI) was first proposed to explain male sterility caused by X-autosomal translocation in Drosophila, and more recently it was suggested that MSCI might provide the conditions under which selection would favor the accumulation of testis-expressed genes on autosomes. In order to investigate the impact of MSCI on Drosophila testis-expressed genes, we performed a global gene expression analysis of the three major phases of D. melanogaster spermatogenesis: mitosis, meiosis, and post-meiosis. First, we found evidence supporting the existence of MSCI by comparing the expression levels of X- and autosome-linked genes, finding the former to be significantly reduced in meiosis. Second, we observed that the paucity of X-linked testis-expressed genes was restricted to those genes highly expressed in meiosis. Third, we found that autosomal genes relocated through retroposition from the X chromosome were more often highly expressed in meiosis in contrast to their X-linked parents. These results suggest MSCI as a general mechanism affecting the evolution of some testis-expressed genes.


Asunto(s)
Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Meiosis/genética , Cromosomas Sexuales/genética , Espermatogénesis/genética , Testículo/metabolismo , Inactivación del Cromosoma X/genética , Animales , Drosophila melanogaster/citología , Perfilación de la Expresión Génica , Genes de Insecto , Genes Ligados a X , Genoma de los Insectos/genética , Masculino , Mitosis , Especificidad de Órganos/genética , Testículo/citología
17.
Evolution ; 75(8): 2042-2054, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34184262

RESUMEN

Spatial and seasonal variations in the environment are ubiquitous. Environmental heterogeneity can affect natural populations and lead to covariation between environment and allele frequencies. Drosophila melanogaster is known to harbor polymorphisms that change both with latitude and seasons. Identifying the role of selection in driving these changes is not trivial, because nonadaptive processes can cause similar patterns. Given the environment changes in similar ways across seasons and along the latitudinal gradient, one promising approach may be to look for parallelism between clinal and seasonal changes. Here, we test whether there is a genome-wide correlation between clinal and seasonal changes, and whether the pattern is consistent with selection. Allele frequency estimates were obtained from pooled samples from seven different locations along the east coast of the United States, and across seasons within Pennsylvania. We show that there is a genome-wide correlation between clinal and seasonal variations, which cannot be explained by linked selection alone. This pattern is stronger in genomic regions with higher functional content, consistent with natural selection. We derive a way to biologically interpret these correlations and show that around 3.7% of the common, autosomal variants could be under parallel seasonal and spatial selection. Our results highlight the contribution of natural selection in driving fluctuations in allele frequencies in natural fly populations and point to a shared genomic basis to climate adaptation that happens over space and time in D. melanogaster.


Asunto(s)
Drosophila melanogaster , Genética de Población , Animales , Drosophila melanogaster/genética , Frecuencia de los Genes , Variación Genética , Pennsylvania , Estaciones del Año , Selección Genética , Estados Unidos
18.
Nat Commun ; 12(1): 892, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563972

RESUMEN

Given their copy number differences and unique modes of inheritance, the evolved gene content and expression of sex chromosomes is unusual. In many organisms the X and Y chromosomes are inactivated in spermatocytes, possibly as a defense mechanism against insertions into unpaired chromatin. In addition to current sex chromosomes, Drosophila has a small gene-poor X-chromosome relic (4th) that re-acquired autosomal status. Here we use single cell RNA-Seq on fly larvae to demonstrate that the single X and pair of 4th chromosomes are specifically inactivated in primary spermatocytes, based on measuring all genes or a set of broadly expressed genes in testis we identified. In contrast, genes on the single Y chromosome become maximally active in primary spermatocytes. Reduced X transcript levels are due to failed activation of RNA-Polymerase-II by phosphorylation of Serine 2 and 5.


Asunto(s)
Drosophila/genética , Cromosomas Sexuales/genética , Espermatocitos/metabolismo , Animales , Drosophila/crecimiento & desarrollo , Regulación de la Expresión Génica , Genes Ligados a X/genética , Genes Ligados a Y/genética , Larva/genética , Larva/crecimiento & desarrollo , Masculino , Especificidad de Órganos , ARN Polimerasa II/metabolismo , Cromosomas Sexuales/metabolismo , Espermatogénesis/genética , Testículo/citología , Testículo/metabolismo , Transcripción Genética
19.
Genetics ; 179(4): 2325-7, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18660539

RESUMEN

The Y chromosome and other heterochromatic regions present special challenges for genome sequencing and for the annotation of genes. Here we describe two new genes (ARY and WDY) on the Drosophila melanogaster Y, bringing its number of known single-copy genes to 12. WDY may correspond to the fertility factor kl-1.


Asunto(s)
Drosophila melanogaster/genética , Genes Ligados a Y , Cromosoma Y/genética , Aldehído Reductasa/genética , Animales , Proteínas de Drosophila/genética , Masculino , Datos de Secuencia Molecular
20.
J Neurodev Disord ; 11(1): 13, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31319798

RESUMEN

BACKGROUND: Phelan-McDermid syndrome (PMS) is a rare genetic disorder characterized by global developmental delay, intellectual disability (ID), autism spectrum disorder (ASD), and mild dysmorphisms associated with several comorbidities caused by SHANK3 loss-of-function mutations. Although SHANK3 haploinsufficiency has been associated with the major neurological symptoms of PMS, it cannot explain the clinical variability seen among individuals. Our goals were to characterize a Brazilian cohort of PMS individuals, explore the genotype-phenotype correlation underlying this syndrome, and describe an atypical individual with mild phenotype. METHODOLOGY: A total of 34 PMS individuals were clinically and genetically evaluated. Data were obtained by a questionnaire answered by parents, and dysmorphic features were assessed via photographic evaluation. We analyzed 22q13.3 deletions and other potentially pathogenic copy number variants (CNVs) and also performed genotype-phenotype correlation analysis to determine whether comorbidities, speech status, and ASD correlate to deletion size. Finally, a Brazilian cohort of 829 ASD individuals and another independent cohort of 2297 ID individuals was used to determine the frequency of PMS in these disorders. RESULTS: Our data showed that 21% (6/29) of the PMS individuals presented an additional rare CNV, which may contribute to clinical variability in PMS. Increased pain tolerance (80%), hypotonia (85%), and sparse eyebrows (80%) were prominent clinical features. An atypical case diagnosed with PMS at 18 years old and IQ within the normal range is here described. Among Brazilian ASD or ID individuals referred to CNV analyses, the frequency of 22q13.3 deletion was 0.6% (5/829) and 0.61% (15/2297), respectively. Finally, renal abnormalities, lymphedema, and language impairment were found to be positively associated with deletion sizes, and the minimum deletion to cause these abnormalities is here suggested. CONCLUSIONS: This is the first work describing a cohort of Brazilian individuals with PMS. Our results confirm the impact of 22q13 deletions on ASD and several comorbidities, such as hypotonia. The estimation of a minimal deletion size for developing lymphedema and renal problem can assist prediction of prognosis in PMS individuals, particularly those diagnosed in early infancy. We also identified one atypical individual carrying SHANK3 deletion, suggesting that resilience to such mutations occurs. This case expands the clinical spectrum of variability in PMS and opens perspectives to identify protective mechanisms that can minimize the severity of this condition.


Asunto(s)
Trastorno del Espectro Autista , Estudios de Asociación Genética , Adolescente , Adulto , Trastorno del Espectro Autista/etiología , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Brasil , Niño , Preescolar , Deleción Cromosómica , Trastornos de los Cromosomas/complicaciones , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/fisiopatología , Cromosomas Humanos Par 22/genética , Estudios de Cohortes , Variaciones en el Número de Copia de ADN/genética , Femenino , Humanos , Lactante , Masculino , Proteínas del Tejido Nervioso/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA