Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 415(1): 7-16, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36085421

RESUMEN

While the exact health risks associated with nanoplastics are currently the focus of intense research, there is no doubt that humans are exposed to nanoplastics and that food could be a major source of exposure. Nanoplastics are released from plastic materials and articles used during food production, processing, storage, preparation, and serving. They are also likely to enter the food chain via contaminated water, air, and soil. However, very limited exposure data for risk assessment exists so far due to the lack of suitable analytical methods. Nanoplastic detection in food poses a great analytical challenge due to the complexity of plastics and food matrices as well as the small size and expectedly low concentration of the plastic particles. Multidetector field flow fractionation has emerged as a valuable analytical technique for nanoparticle separation over the last decades, and the first studies using the technique for analyzing nanoplastics in complex matrices are emerging. In combination with online detectors and offline analysis, multidetector field flow fractionation is a powerful platform for advanced characterization of nanoplastics in food by reducing sample complexity, which otherwise hampers the full potential of most analytical techniques. The focus of this article is to present the current state of the art of multidetector field flow fractionation for nanoplastic analysis and to discuss future trends and needs aiming at the analysis of nanoplastics in food.


Asunto(s)
Alimentos , Fraccionamiento de Campo-Flujo , Nanopartículas , Contaminantes Químicos del Agua , Humanos , Fraccionamiento de Campo-Flujo/métodos , Microplásticos/análisis , Nanopartículas/análisis , Tamaño de la Partícula , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , Análisis de los Alimentos
2.
Food Control ; 120: 107550, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33536722

RESUMEN

Titanium dioxide is a white colourant authorised as food additive E 171 in the EU, where it is used in a range of alimentary products. As these materials may contain a fraction of particulates with sizes below 100 nm and current EU regulation requires specific labelling of food ingredient to indicate the presence of engineered nanomaterials there is now a need for standardised and validated methods to appropriately size and quantify (nano)particles in food matrices. A single-particle inductively coupled plasma mass spectrometry (spICP-MS) screening method for the determination of the size distribution and concentration of titanium dioxide particles in sugar-coated confectionery and pristine food-grade titanium dioxide was developed. Special emphasis was placed on the sample preparation procedure, crucial to reproducibly disperse the particles before analysis. The transferability of this method was tested in an interlaboratory comparison study among seven experienced European food control and food research laboratories equipped with various ICP-MS instruments and using different software packages. The assessed measurands included the particle mean diameter, the most frequent diameter, the percentage of particles (in number) with a diameter below 100 nm, the particles' number concentration and a number of cumulative particle size distribution parameters (D0, D10, D50, D99.5, D99.8 and D100). The evaluated method's performance characteristics were, the within-laboratory precision, expressed as the relative repeatability standard deviation (RSDr), and the between-laboratory precision, expressed as the relative reproducibility standard deviation (RSDR). Transmission electron microscopy (TEM) was used as a confirmatory technique and served as the basis for bias estimation. The optimisation of the sample preparation step showed that when this protocol was applied to the relatively simple sample food matrices used in this study, bath sonication turned out to be sufficient to reach the highest, achievable degree of dispersed constituent particles. For the pristine material, probe sonication was required. Repeatability and reproducibility were below 10% and 25% respectively for most measurands except for the lower (D0) and the upper (D100) bound of the particle size distribution and the particle number concentration. The broader distribution of the lower and the upper bounds could be attributed to instrument-specific settings/setups (e.g. the timing parameters, the transport efficiency, type of mass-spectrometer) and software-specific data treatment algorithms. Differences in the upper bound were identified as being due to the non-harmonised application of the upper counting limit. Reporting D99.5 or D99.8 instead of the effectively largest particle diameter (D100) excluded isolated large particles and considerably improved the reproducibility. The particle number-concentration was found to be influenced by small differences in the sample preparation procedure. The comparison of these results with those obtained using electron microscopy showed that the mean and median particle diameter was, in all cases, higher when using spICP-MS. The main reason for this was the higher size detection limit for spICP-MS plus the fact that some of the analysed particles remained agglomerated/aggregated after sonication. Single particle ICP-MS is a powerful screening technique, which in many cases provides sufficient evidence to confirm the need to label a food product as containing (engineered) titanium dioxide nanomaterial according to the current EU regulatory requirements. The overall positive outcome of the method performance evaluation and the current lack of alternative standardised procedures, would indicate this method as being a promising candidate for a full validation study.

3.
Part Fibre Toxicol ; 17(1): 2, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924220

RESUMEN

BACKGROUND: Previous studies have shown that inhalation of welding fumes may induce pulmonary and systemic inflammation and organ accumulation of metal, to which spermatogenesis and endocrine function may be sensitive. Also obesity may induce low-grade systemic inflammation. This study aimed to investigate the effects on sperm production of inhaled metal nanoparticles from stainless steel welding, and the potential exacerbation by intake of a high fat diet. Both the inbred Brown Norway and the outbred Sprague Dawley rat strains were included to study the influence of strain on the detection of toxicity. Rats were fed regular or high fat (HF) diet for 24 weeks and were exposed to 20 mg/m3 of gas metal arc-stainless steel (GMA-SS) welding fumes or filtered air for 3 h/day, 4 days/week for 5 weeks, during weeks 7-12. Outcomes were assessed upon termination of exposure (week 12) and after recovery (week 24). RESULTS: At week 12, the GMA-SS exposure induced pulmonary inflammation in both strains, without consistent changes in markers of systemic inflammation (CRP, MCP-1, IL-6 and TNFα). GMA-SS exposure lowered daily sperm production compared to air controls in Sprague Dawley rats, but only in GMA-SS Brown Norway rats also fed the HF diet. Overall, HF diet rats had lower serum testosterone levels compared to rats on regular diet. Metal content in the testes was assessed in a limited number of samples in Brown Norway rats, but no increase was obsedrved. At week 24, bronchoalveolar lavage cell counts had returned to background levels for GMA-SS exposed Sprague Dawley rats but remained elevated in Brown Norway rats. GMA-SS did not affect daily sperm production statistically significantly at this time point, but testicular weights were lowered in GMA-SS Sprague Dawley rats. Serum testosterone remained lowered in Sprague Dawley rats fed the HF diet. CONCLUSION: Exposure to GMA-SS welding fumes lowered sperm production in two strains of rats, whereas high fat diet lowered serum testosterone. The effect on sperm counts was likely not mediated by inflammation or lowered testosterone levels. The studied reproductive outcomes seemed more prone to disruption in the Sprague Dawley compared to the Brown Norway strain.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Dieta Alta en Grasa/efectos adversos , Exposición por Inhalación/efectos adversos , Espermatogénesis/efectos de los fármacos , Testosterona/sangre , Soldadura , Animales , Biomarcadores/metabolismo , Neumonía/inducido químicamente , Neumonía/metabolismo , Ratas Sprague-Dawley , Especificidad de la Especie , Recuento de Espermatozoides , Acero Inoxidable
4.
Arch Toxicol ; 94(12): 4023-4035, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32914219

RESUMEN

Iron oxide nanoparticles are used in various industrial fields, as a tool in biomedicine as well as in food colorants, and can therefore reach human metabolism via oral uptake or injection. However, their effects on the human body, especially the liver as one of the first target organs is still under elucidation. Here, we studied the influence of different representative iron oxide materials on xenobiotic metabolism of HepaRG cells. These included four iron oxide nanoparticles, one commercially available yellow food pigment (E172), and non-particulate ionic control FeSO4. The nanoparticles had different chemical and crystalline structures and differed in size and shape and were used at a concentration of 50 µg Fe/mL. We found that various CYP enzymes were downregulated by some but not all iron oxide nanoparticles, with the Fe3O4-particle, both γ-Fe2O3-particles, and FeSO4 exhibiting the strongest effects, the yellow food pigment E172 showing a minor effect and an α-Fe2O3 nanoparticle leading to almost no inhibition of phase I machinery. The downregulation was seen at the mRNA, protein expression, and activity levels. Thereby, no dependency on the size or chemical structure was found. This underlines the difficulty of the grouping of nanomaterials regarding their physiological impact, suggesting that every iron oxide nanoparticle species needs to be evaluated in a case-by-case approach.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Hepatocitos/efectos de los fármacos , Nanopartículas Magnéticas de Óxido de Hierro/toxicidad , Xenobióticos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biotransformación , Receptor de Androstano Constitutivo , Sistema Enzimático del Citocromo P-450/genética , Regulación hacia Abajo , Regulación Enzimológica de la Expresión Génica , Células Hep G2 , Hepatocitos/enzimología , Humanos , Isoenzimas , Estructura Molecular , Tamaño de la Partícula , Receptor X de Pregnano/efectos de los fármacos , Receptor X de Pregnano/genética , Receptor X de Pregnano/metabolismo , Receptores de Hidrocarburo de Aril/efectos de los fármacos , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Especificidad por Sustrato , Xenobióticos/farmacología
5.
Langmuir ; 32(32): 8222-9, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27459496

RESUMEN

The dissolution of upconverting AYF4:Yb,Tm (A = Na or K) nanoparticles (UCNPs) in aqueous media was systematically studied. UCNPs with a cubic structure and sizes of between 10 and 33 nm were synthesized solvothermally in ethylene glycol at 200 °C. The UCNPs of both compositions showed an upconversion fluorescence emission characteristic of Tm(3+). The effects of the A cation, the particle size, the temperature, the pH, and the composition of the aqueous medium on the dissolution of the UCNPs were evaluated. The degree of dissolution was determined from the fraction of dissolved fluoride (F(-)) using potentiometry. Unexpectedly, the composition of aqueous media had the most significant effect on the dissolution of the UCNPs. The highest degree of dissolution and rate were measured for the phosphate-buffered saline (PBS), which can be explained by the formation of stable lanthanide compounds with phosphates. The degree of dissolution was much lower in water and in the phthalate buffer, which was attributed to the release of F(-) as a result of the hydrolysis of the UCNPs' surfaces.

6.
Heliyon ; 10(1): e23849, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38192822

RESUMEN

Prosthetic liners are mainly used as an interface between residual limbs and prosthetic sockets to minimize physical and biological damage to soft tissue. However, the closed and moist conditions within liners and the amputee's skin provide a suitable environment for bacterial growth to cause infections. This study aimed to coat a comprehensive variant material with copper oxide nanoparticles (CuO NPs) and compare their surface analysis and antibacterial properties. These materials were covered with CuO NPs solution at a concentration of 70 µg mL-1 to achieve this purpose. After drying, their surface characteristics were analyzed by measuring zeta potential, contact angle, surface roughness, and fiber arrangement. Cu-released concentration from the coatings into the acetate buffer solution by inductively coupled plasma mass spectrometry indicated that lycra and nylon quickly released Cu ions to concentrations up to ∼0.2 µg mL-1 after 24 h, causing low metabolic activity of human bone-marrow mesenchymal stem cells (bMSC) in the indirect assay. Antibacterial activity of the coated specimens was evaluated by infecting their surfaces with the Gram-positive bacteria Staphylococcus epidermidis, reporting a significant ∼40 % reduction of metabolic activity for x-dry after 24 h; in addition, the number of viable bacterial colonies adhered to the surface of this material was reduced by ∼23 times in comparison with non-treated x-dry that were visually confirmed by scanning electron microscope. In conclusion, CuO NPs x-dry shows optimistic results to pursue further experiments due to its slow speed of Cu release and prolonged antibacterial activity, as well as its compatibility with human cells.

7.
Nanomaterials (Basel) ; 14(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38607105

RESUMEN

In healthcare facilities, infections caused by Staphylococcus aureus (S. aureus) from textile materials are a cause for concern, and nanomaterials are one of the solutions; however, their impact on safety and biocompatibility with the human body must not be neglected. This study aimed to develop a novel multilayer coating with poly(allylamine hydrochloride) (PAH) and immobilized ZnO nanoparticles (ZnO NPs) to make efficient antibacterial and biocompatible cotton, polyester, and nylon textiles. For this purpose, the coated textiles were characterized with profilometry, contact angles, and electrokinetic analyzer measurements. The ZnO NPs on the textiles were analyzed by scanning electron microscopy and inductively coupled plasma mass spectrometry. The antibacterial tests were conducted with S. aureus and biocompatibility with immortalized human keratinocyte cells. The results demonstrated successful PAH/ZnO coating formation on the textiles, demonstrating weak hydrophobic properties. Furthermore, PAH multilayers caused complete ZnO NP immobilization on the coated textiles. All coated textiles showed strong growth inhibition (2-3-log reduction) in planktonic and adhered S. aureus cells. The bacterial viability was reduced by more than 99%. Cotton, due to its better ZnO NP adherence, demonstrated a slightly higher antibacterial performance than polyester and nylon. The coating procedure enables the binding of ZnO NPs in an amount (<30 µg cm-2) that, after complete dissolution, is significantly below the concentration causing cytotoxicity (10 µg mL-1).

8.
Materials (Basel) ; 16(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37512455

RESUMEN

The green transition initiative has exposed the importance of effective recycling of Nd-Fe-B magnets for achieving sustainability and foreign independence. In this study, we considered strip-cast, hydrogenated, jet-milled Nd-Fe-B powder as a case study to explore the potential for selective chemical leaching of the Nd-rich phase, aiming to extract the Nd2Fe14B matrix phase. Diluted citric and nitric acids at concentrations of 0.01, 0.1, and 1 M were considered potential leaching mediums, and the leaching time was 15 min. Microstructural investigation, magnetic characterization, and elemental compositional analysis were performed to investigate leaching efficiency and selectivity. Based on SEM analysis, Nd/Fe ratio monitoring via ICP-MS, and the high moment/mass value at 160 emu/g for the sample leached with 1 M citric acid, 1 M citric acid proved highly selective toward the Nd-rich phase. Exposure to nitric acid resulted in a structurally damaged Nd2Fe14B matrix phase and severely diminished moment/mass value at 96.2 emu/g, thus making the nitric acid unsuitable for selective leaching. The presence of hydrogen introduced into the material via the hydrogen decrepitation process did not notably influence the leaching dynamics. The proposed leaching process based on mild organic acids is environmentally friendly and can be scaled up and adopted for reprocessing industrial scrap or end-of-life Nd-Fe-B magnets to obtain single-phase Nd-Fe-B powders that can be used for novel magnet-making.

9.
Environ Sci Pollut Res Int ; 29(21): 31734-31748, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35013963

RESUMEN

The spatial and temporal variability of dissolved trace elements (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Sb, Sr, Ti, U, V and Zn) in the upper and middle reaches of the Sava River during two campaigns (2007/2008 and 2017/2018) was examined. The study also included important tributaries and wastewater effluents. No crucial change in metal concentrations in the Sava River water between the two sampling periods was detected. Elements Co, Cr, Cu, Fe, Sb and Zn had higher concentrations at several sites in the first period, whereas Ba, Cd and Pb in the second period. The influence of wastewater discharges proved to be negligible. The highest levels of potentially toxic metals (Cd, Cr, Cu, Sb, V and Zn) were found downstream of the industrial town of Sisak. Concentration-discharge relationship of dissolved elements showed a chemostatic behaviour for As, Cr, Cu, Sr and V and chemodynamic behaviour for all other elements. The UNMIX model, used to identify and quantify metal sources, indicated that soil weathering was the main source of most elements (Al, As, Ba, Co, Cu, Fe, Li, Ni, Sb, Sr and V), with an anthropogenic contribution for Cd, Mo, Pb, Ti and Zn, while Mn and U were associated with colloid formation. The Sava River was defined as moderately polluted regarding metals, whose water quality meets environmental quality standards (EQS). These results may help to better understand the behaviour of dissolved metals in rivers under anthropogenic pressure and to control pollution in the Sava River Basin.


Asunto(s)
Metales Pesados , Oligoelementos , Contaminantes Químicos del Agua , Cadmio , Croacia , Monitoreo del Ambiente , Plomo , Metales Pesados/análisis , Eslovenia , Oligoelementos/análisis , Aguas Residuales , Contaminantes Químicos del Agua/análisis
10.
Environ Toxicol Pharmacol ; 95: 103939, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35908641

RESUMEN

The rate of translocation of ingested nanoparticles (NPs) and how the uptake is affected by a food matrix are key aspects of health risk assessment. In this study, female Sprague Dawley rats (N = 4/group) received 0, 1.4, or 13 mg of cerium oxide (CeO2 NM-212) NPs/rat/day by gavage or in a chocolate spread snack 5 days/week for 1 or 2 weeks followed by 2 weeks of recovery. A dose and time-dependent uptake in the liver and spleen of 0.1-0.3 and 0.004-0.005 parts per million (ng/mg) of the total administered dose was found, respectively. There was no statistically significant difference in cerium concentration in the liver or spleen after gavage compared to snack dosing. Microscopy revealed indications of necrotic changes in the liver and decreased cellularity in white pulp in the spleen. The snack provided precise administration and a more human-relevant exposure of NPs and could improve animal welfare as alternative to gavage.


Asunto(s)
Cerio , Nanopartículas , Administración Oral , Animales , Cerio/toxicidad , Femenino , Humanos , Ratas , Ratas Sprague-Dawley , Bocadillos , Distribución Tisular
11.
J Agric Food Chem ; 69(34): 9979-9990, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34414767

RESUMEN

In this work, we show the potential of single-particle inductively coupled plasma-mass spectrometry (spICP-MS) as a screening technique for detection of inorganic nanoparticles (NPs) that are expected to be present in food. We demonstrate that the spICP-MS/MS method in combination with collision/reaction cell gases and microsecond dwell times offers sensitive and interference-free detection of NPs. We present the steps that have to be considered to correctly assess the presence of NPs in food, for example, setting a suitable threshold for discriminating particle events from the baseline and analyzing a sufficient number of blank samples to minimize false-positive results. We applied the proposed screening approach to the sequential detection of NPs containing 8 selected elements that could be potentially present in 13 different food products. The highest mass concentrations of NPs (in the mg/g range) were found in the samples with food additives which are known to contain a fraction of NPs. The presence of (nano)particles in some of the investigated food samples was also confirmed by scanning electron microscopy analysis. Moreover, for the example of Al-containing NPs in Chinese noodles, we demonstrate that identification of the source of NPs with an unknown composition can be challenging when using only spICP-MS as particle mass concentration and size distribution can only be estimated by assuming a certain particle composition/shape. Other complementary techniques for particle characterization, such as electron microscopy in combination with elemental analysis, are therefore required.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Aditivos Alimentarios , Tamaño de la Partícula , Análisis Espectral , Espectrometría de Masas en Tándem
12.
Bioelectrochemistry ; 134: 107523, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32272337

RESUMEN

To achieve high efficiency of electroporation and to minimize unwanted side effects, the electric field parameters must be optimized. Recently, it was suggested that biphasic high-frequency irreversible electroporation (H-FIRE) pulses reduce muscle contractions. However, it was also shown for sub-microsecond biphasic pulses that the opposite polarity phase of the pulse cancels the effect of the first phase if the interphase delay is short enough. We investigated the effect of interphase and interpulse delay (ranging from 0.5 to 10,000 µs) of 1 µs biphasic H-FIRE pulses on cell membrane permeabilization, on survival of four mammalian cell lines and determined metal release from aluminum, platinum and stainless steel electrodes. Biphasic H-FIRE pulses were compared to 8 × 100 µs monophasic pulses. We show that a longer interphase and interpulse delay results in lower cell survival, while the effects on cell membrane permeabilization are ambiguous. The cancellation effect was observed only for the survival of one cell line. Application of biphasic H-FIRE pulses results in lower metal release from electrodes but the interphase and interpulse delay does not have a large effect. The electrode material, however, importantly influences metal release - the lowest release was measured from platinum and the highest from aluminum electrodes.


Asunto(s)
Aluminio/metabolismo , Permeabilidad de la Membrana Celular , Electroporación/métodos , Animales , Células CHO , Supervivencia Celular , Cricetulus , Electrodos , Factores de Tiempo
13.
J Trace Elem Med Biol ; 57: 28-39, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31557573

RESUMEN

BACKGROUND: Monolithic chromatography using convective interaction media (CIM) disks or columns can be used in the separation step of speciation analysis. When different monolithic disks are placed in one housing, forming conjoint liquid chromatography (CLC) monolithic column, two-dimensional separation is achieved in a single chromatographic run. METHODS: Here, we assembled low-pressure (maximum 50 bar) CLC monolithic column, which consists of two 0.34 mL shallow CIM monolithic disks and high-pressure CLC column (maximum 150 bar) from 0.1 mL analytical high performance short bed CIMac monolithic disks. Both the CLC columns constructed from affinity Protein G and weak anion exchange diethylamine (DEAE) disks, were applied for the speciation of cisplatin, oxaliplatin and carboplatin in spiked standard serum proteins, spiked human serum and serum of cancer patients. The analytical performances of the CLC columns used were evaluated by comparing their robustness, selectivity, repeatability and reproducibility. The separated serum proteins were detected on-line by ultraviolet (UV) and eluted Pt species by inductively coupled plasma mass spectrometry (ICP-MS). For accurate quantification of the separated Pt species (unbound Pt-based chemotherapeutic from species associated to transferrin (Tf), human serum albumin (HSA) and Immunoglobulin G (IgG)), post column isotope dilution (ID)-ICP-MS was used. RESULTS: The data from analyses showed that both tested CLC monolithic columns gave statistically comparable results, with the low-pressure CLC column exhibiting better resolving power and robustness. It also enables more effective cleaning of monolithic disks and to analyse larger series of serum samples than the high-pressure CLC column. Analyses of serum samples of cancer patients treated with cisplatin or carboplatin showed that Pt-chemotherapeutics were bound preferentially to HSA (around 80%). The portion of unbound Pt in general did not exceed 2%, up to 5% of Pt was associated with Tf and approximately 20% with IgG. Column recoveries, calculated as a ratio between the sum of concentrations of Pt species eluted and concentration of total Pt in serum samples, were close to 100%. CONCLUSIONS: Low-pressure CLC column exhibited greater potential than high-pressure CLC column, and can be thus recommended for its intended use in speciation analysis of metal-based biomolecules.


Asunto(s)
Cromatografía Liquida/métodos , Neoplasias/sangre , Platino (Metal)/química , Humanos , Inmunoglobulina G/sangre , Reproducibilidad de los Resultados , Albúmina Sérica
14.
Environ Toxicol Chem ; 39(1): 131-140, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31581319

RESUMEN

Cerium oxide nanoparticles (CeO2 NPs) are included in the Organisation for Economic Co-operation and Development (OECD) priority list of engineered nanomaterials for assessment of their environmental impact. The present study was carried out to assess the CeO2 NP toxicity to the freshwater midge Chironomus riparius larvae at concentrations of 2.5, 25, 250, and 2500 mg of CeO2 NP/kg of sediment. Experiments were designed to assess the prolonged exposure of midges to CeO2 NPs while adhering to OECD test guideline 218. The following parameters were investigated: CeO2 NP uptake by larvae, oxidative stress parameters, in vivo genotoxic effects, and life trait parameters. Inductively coupled plasma-mass spectrometry analysis showed a significant positive correlation between the concentration of CeO2 NPs in the sediment and its uptake by the larvae. No significant mortality was observed in C. riparius, and oxidative stress was not detected. The only significantly induced sublethal effect was genotoxicity, which began to manifest at a lowest-observed-effect concentration of 25 mg kg-1 of sediment and progressively increased at higher concentrations. Our results indicate that exposure to CeO2 NP-contaminated freshwater sediments does not pose a risk to chironomids at environmentally realistic concentrations. However, the significant accumulation of CeO2 NPs by chironomid larvae may pose a risk through trophic transfer to organisms further up the food chain. Environ Toxicol Chem 2019;39:131-140. © 2019 SETAC.


Asunto(s)
Cerio/toxicidad , Chironomidae/efectos de los fármacos , Daño del ADN , Larva/efectos de los fármacos , Nanopartículas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Chironomidae/genética , Chironomidae/metabolismo , Cadena Alimentaria , Agua Dulce/química , Estrés Oxidativo/efectos de los fármacos
15.
Food Chem ; 327: 127000, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32454284

RESUMEN

Iron oxides used as food colorants are listed in the European Union with the number E172. However, there are no specifications concerning the fraction of nanoparticles in these pigments. Here, seven E172 products were thoroughly characterized. Samples of all colors were analyzed with a broad spectrum of methods to assess their physico-chemical properties. Small-Angle X-ray Scattering (SAXS), Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), zeta-potential, Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), X-ray diffraction (XRD), Brunauer-Emmett-Teller analysis (BET), Asymmetric Flow Field-Flow Fractionation (AF4) and in vitro cell viability measurements were used. Nanoparticles were detected in all E172 samples by TEM or SAXS measurements. Quantitative results from both methods were comparable. Five pigments were evaluated by TEM, of which four had a size median below 100 nm, while SAXS showed a size median below 100 nm for six evaluated pigments. Therefore, consumers may be exposed to iron oxide nanoparticles through the consumption of food pigments.


Asunto(s)
Compuestos Férricos/química , Colorantes de Alimentos/química , Dispersión Dinámica de Luz , Fraccionamiento de Campo-Flujo/métodos , Microscopía Electrónica de Transmisión , Nanopartículas/química , Tamaño de la Partícula , Dispersión del Ángulo Pequeño , Difracción de Rayos X
16.
Nanomaterials (Basel) ; 10(5)2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32384645

RESUMEN

The majority of the clinically approved iron oxide nanoparticles (IO NPs) used as contrast agents for magnetic resonance imaging (MRI) have been withdrawn from the market either due to safety concerns or lack of profits. To address this challenge, liposomes have been used to prepare IO-based T2 contrast agents. We studied the influence of different phospholipids on the relaxivity (r2) values of magneto-liposomes (MLs) containing magnetic NPs in the bilayer, where a strong correlation between the bilayer fluidity and r2 is clearly shown. Embedding 5-nm IO NPs in the lipid bilayer leads to a significant improvement in their relaxivity, where r2 values range from 153 ± 5 s-1 mM-1 for DPPC/cholesterol/DSPE-PEG (96/50/4) up to 673 ± 12 s-1 mM-1 for DOPC/DSPE-PEG (96/4), compared to "free" IO NPs with an r2 value of 16 s-1 mM-1, measured at 9.4 T MRI scanner. In vitro MRI measurements, together with the ICP-MS analysis, revealed MLs as highly selective contrast agents that were preferentially taken up by cancerous T24 cells, which led to an improvement in the contrast and an easier distinction between the healthy and the cancerous cells. A careful selection of the lipid bilayer to prepare MLs could offer efficient MRI contrast agents, even at very low IO NP concentrations.

17.
ChemSusChem ; 12(21): 4754-4758, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31529776

RESUMEN

Recycling of end-of-life Nd-Fe-B magnets is an important strategy for reducing the environmental dangers associated with rare-earth mining and overcoming the supply risks associated with the rare-earth elements. In this study, a novel concept for recycling of sintered Nd-Fe-B magnets by directly recovering the matrix Nd2 Fe14 B grains is presented. The procedure is based on the anodic etching of sintered Nd-Fe-B magnets in a nonaqueous dimethylformamide (DMF)/0.3 mol L-1 FeCl2 bath. Selective recovery of Nd2 Fe14 B grains was realized within the applied current density <5 mA cm-2 based on the etching priority of phases: metallic Nd > intergranular NdFe4 B4 > matrix Nd2 Fe14 B. The total energy consumption of the proposed recycling route is estimated to be 2.99 kWh kg-1 , which is comparable to the state-of-the-art methods. However, the proposed recycling route is currently the only procedure that enables repeated recycling of sintered Nd-Fe-B magnets in a closed-loop system.

18.
Sci Total Environ ; 650(Pt 1): 958-969, 2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30308870

RESUMEN

Fish from the Sava River are consumed daily by the local people: therefore, concern has been raised about the health implications of eating contaminated fish. In the present study, potentially toxic elements (PTE), such as Zn, Cu, Cr, Ni, Cd, Pb, As, Hg, and methylmercury (MeHg), were determined in ichthyofauna that are commonly consumed. PTE were determined in the fish muscle tissue. Fish were sampled at 12 locations from the source of the Sava River to its confluence with the Danube River during two sampling campaigns, namely; in 2014 under high water conditions and in 2015 under normal water conditions. Due to the different water regimes, different fish species were collected for chemical analysis. We observed that the concentrations of elements analysed in the fish muscle tissue were generally very low, except for those of Hg. Moreover, more than 90% of Hg present in the fish was in its most toxic form, namely MeHg. Especially in fish from the 2015 sampling campaign, Hg and MeHg concentrations increased with fish size, trophic level, and in the downstream direction. In addition, for Pb and As, and to some extent for Cd and Cr, spatial differences were detected in both years. The highest concentrations of PTE were detected in fish from sites with intensive industrial and agricultural activities. The consumption of fish in general does not pose a health risk for the PTE studied, except for Hg/MeHg at selected contaminated sites.


Asunto(s)
Monitoreo del Ambiente , Sustancias Peligrosas/metabolismo , Músculos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Peces , Cadena Alimentaria , Contaminación de Alimentos/estadística & datos numéricos , Sustancias Peligrosas/análisis , Mercurio/análisis , Compuestos de Metilmercurio/análisis , Músculos/química , Medición de Riesgo , Ríos , Contaminantes Químicos del Agua/análisis
19.
Sci Total Environ ; 648: 1087-1096, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30340255

RESUMEN

Among different stressors like drought, hydro-morphological alterations, and pollution from agricultural activities, nutrients, organic compounds and discharges from wastewater treatment plants (WWTPs), potentially toxic elements (PTE) may also contribute to the overall pollution of the Evrotas River, Greece. Nevertheless, information on pollution of elements in water and sediments in this river is scarcely documented. There is also no information available on the impact of elemental pollution from the aquatic environmental compartments on biota. To fill these gaps, in this study, water, sediment and fish samples were collected from four sampling sites along the Evrotas River under variable flow regimes (July 2015, higher discharge; June 2016, low discharge and September 2016, minimum discharge). Total and dissolved element concentrations in water samples, total and acetic acid extractable contents in sediments, and element concentrations in fish samples were determined by inductively coupled plasma mass spectrometry and significant relationships between samples were established using correlation analysis. The concentrations of PTE (Ni, Cr, Cd, As, Pb, Zn and Cu) in water were generally low, while elevated Ni and Cr contents were found in sediments (up to 150 and 300 mg/kg, respectively), with total Cr concentration in water and sediment being positively correlated. The ecological risk posed by the simultaneous presence of PTE in sediments evaluated by calculating the Probable Effect Concentration Coefficient (PEC-Q), demonstrated that PEC-Qs, which were above the critical value of 0.34, derived mostly from Cr and Ni inputs. Since their mobile sediment fraction was extremely low, Cr and Ni origin is most probably geogenic. The analysis of elements in the target fish species, the Evrotas chub, showed low to moderate PTE concentrations, with Pb being positively correlated with total Pb concentration in water. Moderate Zn concentrations found in fish samples from the Evrotas are possibly derived from pesticides and fertilizers.


Asunto(s)
Exposición a Riesgos Ambientales , Peces , Sedimentos Geológicos/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Animales , Monitoreo del Ambiente , Grecia , Modelos Teóricos , Medición de Riesgo , Movimientos del Agua
20.
Sci Total Environ ; 647: 645-652, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30092520

RESUMEN

Transport of hydrophobic pollutants in rivers such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals is often facilitated by suspended sediment particles, which are typically mobilized during high discharge events. Suspended sediments thus represent a means of transport for particle related pollutants within river reaches and may represent a suitable proxy for average pollutant concentrations estimation in a river reach or catchment. In this study, multiple high discharge/turbidity events were sampled at high temporal resolution in the Globaqua River Basins Sava (Slovenia, Serbia), Adige (Italy), and Evrotas (Greece) and analysed for persistent organic pollutants such as PAHs (polycyclic aromatic hydrocarbons) or PCBs (polychlorinated biphenyls) and heavy metals. For comparison, river bed sediment samples were analysed as well. Further, results are compared to previous studies in contrasting catchments in Germany, Iran, Spain, and beyond. Overall results show that loadings of suspended sediments with pollutants are catchment-specific and relatively stable over time at a given location. For PAHs, loadings on suspended particles mainly correlate to urban pressures (potentially diluted by sediment mass fluxes) in the rivers, whereas metal concentrations mainly display a geogenic origin. By cross-comparison with known urban pressure/sediment yield relationships (e.g. for PAHs) or soil background values (for metals) anthropogenic impact - e.g. caused by industrial activities - may be identified. Sampling of suspended sediments gives much more reliable results compared to sediment grab samples which typically show a more heterogeneous contaminant distribution. Based on mean annual suspended sediment concentrations and distribution coefficients of pollutants the fraction of particle facilitated transport versus dissolved fluxes can be calculated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA