Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Arch Virol ; 157(12): 2309-26, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22886279

RESUMEN

Infectious salmon anaemia virus, ISA virus (genus Isavirus, family Orthomyxoviridae), emerged in Norwegian salmon culture in the mid-80s. The genome consists of eight segments coding for at least 10 proteins. ISA viruses show many of similarities to influenza A viruses but differ in many important aspects such as the number of hosts, the host population structure and the route of transmission. The only known hosts and reservoirs for ISA viruses are salmonids found in countries surrounding the North Atlantic. In this study, four different segments of the genome of about 100 ISA viruses have been sequenced in an attempt to understand the evolution of ISA viruses and how these viruses are maintained in and transmitted between populations of farmed Atlantic salmon. The four gene segments code for the nucleoprotein (NP), the putative acid polymerase (PA), the fusion protein (F) and the haemagglutinin-esterase (HE). Analysis of these four genes showed that the substitution rates of the internal proteins (NP and PA) are lower than those of the two surface proteins (F and HE). All four segments are evolving at a lower rate than similar genes in influenza A viruses. The ISA virus populations consist of avirulent viruses and pathogenic strains with variable virulence in Atlantic salmon. Recombination resulting in inserts close to the proteolytic-cleavage site of the precursor F0 protein and deletions in the stalk region of the HE protein seem to be responsible for the transition from avirulent ISA viruses to pathogenic strains. It is also shown that reassortment is a frequent event among the dominating ISA viruses in farmed Atlantic salmon. The pattern that is obtained after phylogenetic analysis of the four gene segments from ISA viruses suggests that the variation is limited to a few distinct clades and that no major changes have occurred in the ISA virus population in Norway since the first viruses were isolated. Calculation of the time of most recent common ancestor (TMRCA) suggests that the Norwegian ISA viruses separated from the European subtype found in North America between 1932 and 1959. The TMRCA data also suggest that the ISA viruses in Chile were transmitted from Norway in the period from 1995 to 2007, depending on which of the four genes were used in the analysis.


Asunto(s)
Evolución Biológica , Enfermedades de los Peces/virología , Isavirus/genética , Infecciones por Orthomyxoviridae/veterinaria , Salmón , Proteínas Virales/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Variación Genética , Genoma Viral/genética , Salud Global , Isavirus/clasificación , Datos de Secuencia Molecular , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Filogenia , ARN Viral/química , ARN Viral/genética , Virus Reordenados
2.
Arch Virol ; 154(1): 1-8, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19034606

RESUMEN

Infectious salmon anaemia virus (ISAV), genus Isavirus (family Orthomyxoviridae), is present in all large salmon (Salmo salar)-producing countries around the North Atlantic. The target species for this virus are members of the genus Salmo, but the virus may also replicate in other salmonids introduced to the North Atlantic (Oncorhychus spp.). Existing ISA virus isolates can be divided into two major genotypes, a North American (NA) and a European (EU) genotype, based on phylogenetic analysis of the genome. The EU genotype can be subdivided into several highly supported clades based on analysis of segments 5 (fusion protein gene) and 6 (hemagglutinin-esterase gene). In 1999 an ISA virus belonging to the NA genotype was isolated from Coho salmon in Chile, and in 2007 the first outbreaks of ISA in farmed Atlantic salmon was observed. Several salmon farms in Chile were affected by the disease in 2007, and even more farms in 2008. In this study, ISA virus has been isolated from salmon in a marine farm suffering an outbreak of the disease in 2008 and from smolts with no signs of ISA in a fresh water lake. Sequencing of the partial genome of these ISA viruses, followed by phylogenetic analysis including genome sequences from members of the NA and EU genotypes, showed that the Chilean ISA virus belongs to the EU genotype. The Chilean ISA virus groups in a clade with exclusively Norwegian ISA viruses, where one of these isolates was obtained from a Norwegian brood stock population. All salmonid species in the southern hemisphere have been introduced from Europe and North America. The absence of natural hosts for ISA viruses in Chile excludes the possibility of natural reservoirs in this country, and the close relationship between contemporary ISA virus strains from farmed Atlantic salmon in Chile and Norway suggest a recent transmission from Norway to Chile. Norway export large amounts of Atlantic salmon embryos every year to Chile; hence, the best explanation for the Norwegian ISA virus in Chile is transmission via these embryos, i.e. vertical or transgenerational transmission. This supports other studies showing that the ISA virus can be transmitted vertically.


Asunto(s)
Enfermedades de los Peces/transmisión , Enfermedades de los Peces/virología , Transmisión Vertical de Enfermedad Infecciosa/veterinaria , Isavirus/fisiología , Infecciones por Orthomyxoviridae/veterinaria , Salmón/virología , Animales , Chile/epidemiología , Isavirus/clasificación , Isavirus/genética , Datos de Secuencia Molecular , Infecciones por Orthomyxoviridae/virología
3.
J Aquat Anim Health ; 26(1): 33-42, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24689956

RESUMEN

Infectious salmon anemia (ISA) virus (genus Isavirus, family Orthomyxoviridae), present in all major salmon producing countries, is the causative agent for a serious and commercially important disease affecting Atlantic Salmon Salmo salar. Nearly all ISA outbreaks occur in the marine production phase and knowledge about survival time for ISA virions in seawater is crucial for an adequate strategy to combat the disease. To acquire knowledge about this important factor, a study of ISA virus exposed to four different physical conditions was carried out. The virions' survival was tested in sterile seawater, sterile seawater with normal ultraviolet light radiation (UVR), natural seawater, and natural seawater with UVR. During the 72-h experiment both presence of ISA virus RNA and the infectivity of ISA virions were monitored. The result of this study showed that the infectivity of ISA virions is lost within 3 h of exposure to natural seawater or sterile seawater with UVR. However, it was possible to detect ISA virus RNA throughout the experimental period. This indicates that the effect of both UVR and biological activity of natural seawater limits the survival time of ISA virions under normal conditions. The survival time of ISA virions in sterile seawater was less than 24 h. Based on the available literature and the present study it is not very likely that passive horizontal transmission in seawater over long distances can occur. This is due to the following factors: (1) the effect of UVR and biological activity on ISA virions infectivity found in the present study, (2) the speed and dilution effect in seawater currents in salmon farming areas, (3) the temperature during the major outbreak periods, and (4) the need for an infective dose of ISA virions to reach naive Atlantic Salmon.


Asunto(s)
Enfermedades de los Peces/virología , Isavirus/fisiología , Isavirus/patogenicidad , Infecciones por Orthomyxoviridae/veterinaria , Salmo salar , Agua de Mar , Animales , Isavirus/efectos de la radiación , Infecciones por Orthomyxoviridae/virología , ARN Viral , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA