Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35328583

RESUMEN

Disruption to endothelial cell homeostasis results in an extensive variety of human pathologies that are particularly relevant to major trauma. Circulating catecholamines, such as adrenaline and noradrenaline, activate endothelial adrenergic receptors triggering a potent response in endothelial function. The regulation of the endothelial cell metabolism is distinct and profoundly important to endothelium homeostasis. However, a precise catalogue of the metabolic alterations caused by sustained high catecholamine levels that results in endothelial dysfunction is still underexplored. Here, we uncover a set of up to 46 metabolites that exhibit a dose-response relationship to adrenaline-noradrenaline equimolar treatment. The identified metabolites align with the glutathione-ascorbate cycle and the nitric oxide biosynthesis pathway. Certain key metabolites, such as arginine and reduced glutathione, displayed a differential response to treatment in early (4 h) compared to late (24 h) stages of sustained stimulation, indicative of homeostatic metabolic feedback loops. Furthermore, we quantified an increase in the glucose consumption and aerobic respiration in endothelial cells upon catecholamine stimulation. Our results indicate that oxidative stress and nitric oxide metabolic pathways are downstream consequences of endothelial cell stimulation with sustained high levels of catecholamines. A precise understanding of the metabolic response in endothelial cells to pathological levels of catecholamines will facilitate the identification of more efficient clinical interventions in trauma patients.


Asunto(s)
Catecolaminas , Óxido Nítrico , Permeabilidad Capilar , Catecolaminas/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Epinefrina/metabolismo , Epinefrina/farmacología , Humanos , Óxido Nítrico/metabolismo , Norepinefrina/metabolismo , Norepinefrina/farmacología
2.
J Innate Immun ; 14(5): 477-492, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35078192

RESUMEN

Aroylated phenylenediamines (APDs) are novel modulators of innate immunity with respect to enhancing the expression of antimicrobial peptides and maintaining epithelial barrier integrity. Here, we present a new study on induction of autophagy in human lung epithelial cells by the APD HO53. Interestingly, HO53 affected autophagy in a dose-dependent manner, demonstrated by increased microtubule-associated proteins 1A/1B light-chain 3B (LC3B) processing in mature polarized bronchial epithelial cells. The quantification of LC3B puncta showed increased autophagy flux and formation of autophagosomes visualized by transmission electron microscopy. The phenotypic changes indicated that autophagy induction was associated with activation of 5' adenosine monophosphate-activated protein kinase (AMPK), nuclear translocation of transcription factor EB (TFEB), and changes in expression of autophagy-related genes. The kinetics of the explored signaling pathways indicated on activation of AMPK followed by the nuclear translocation of TFEB. Moreover, our data suggest that HO53 modulates epigenetic changes related to induction of autophagy manifested by transcriptional regulation of histone-modifying enzymes. These changes were reflected by decreased ubiquitination of histone 2B at the lysine 120 residue that is associated with autophagy induction. Taken together, HO53 modulates autophagy, a part of the host defense system, through a complex mechanism involving several pathways and epigenetic events.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Histonas , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Histonas/metabolismo , Humanos , Inmunidad Innata/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA