Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 601(6): 1095-1120, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36633375

RESUMEN

High-altitude (HA) hypoxia may alter the structural-functional integrity of the neurovascular unit (NVU). Herein, we compared male lowlanders (n = 9) at sea level (SL) and after 14 days acclimatization to 4300 m (chronic HA) in Cerro de Pasco (CdP), Péru (HA), against sex-, age- and body mass index-matched healthy highlanders (n = 9) native to CdP (lifelong HA). Venous blood was assayed for serum proteins reflecting NVU integrity, in addition to free radicals and nitric oxide (NO). Regional cerebral blood flow (CBF) was examined in conjunction with cerebral substrate delivery, dynamic cerebral autoregulation (dCA), cerebrovascular reactivity to carbon dioxide (CVRCO2 ) and neurovascular coupling (NVC). Psychomotor tests were employed to examine cognitive function. Compared to lowlanders at SL, highlanders exhibited elevated basal plasma and red blood cell NO bioavailability, improved anterior and posterior dCA, elevated anterior CVRCO2 and preserved cerebral substrate delivery, NVC and cognition. In highlanders, S100B, neurofilament light-chain (NF-L) and T-tau were consistently lower and cognition comparable to lowlanders following chronic-HA. These findings highlight novel integrated adaptations towards regulation of the NVU in highlanders that may represent a neuroprotective phenotype underpinning successful adaptation to the lifelong stress of HA hypoxia. KEY POINTS: High-altitude (HA) hypoxia has the potential to alter the structural-functional integrity of the neurovascular unit (NVU) in humans. For the first time, we examined to what extent chronic and lifelong hypoxia impacts multimodal biomarkers reflecting NVU structure and function in lowlanders and native Andean highlanders. Despite lowlanders presenting with a reduction in systemic oxidative-nitrosative stress and maintained cerebral bioenergetics and cerebrovascular function during chronic hypoxia, there was evidence for increased axonal injury and cognitive impairment. Compared to lowlanders at sea level, highlanders exhibited elevated vascular NO bioavailability, improved dynamic regulatory capacity and cerebrovascular reactivity, comparable cerebral substrate delivery and neurovascular coupling, and maintained cognition. Unlike lowlanders following chronic HA, highlanders presented with lower concentrations of S100B, neurofilament light chain and total tau. These findings highlight novel integrated adaptations towards the regulation of the NVU in highlanders that may represent a neuroprotective phenotype underpinning successful adaptation to the lifelong stress of HA hypoxia.


Asunto(s)
Mal de Altura , Humanos , Masculino , Dióxido de Carbono , Altitud , Hipoxia , Aclimatación/fisiología , Oxidación-Reducción , Óxido Nítrico , Homeostasis
2.
Physiology (Bethesda) ; 37(4): 0, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35001654

RESUMEN

Erythrocytosis, or increased production of red blood cells, is one of the most well-documented physiological traits that varies within and among in high-altitude populations. Although a modest increase in blood O2-carrying capacity may be beneficial for life in highland environments, erythrocytosis can also become excessive and lead to maladaptive syndromes such as chronic mountain sickness (CMS).


Asunto(s)
Mal de Altura , Policitemia , Altitud , Enfermedad Crónica , Humanos , Fenotipo
3.
Am J Physiol Heart Circ Physiol ; 322(5): H844-H856, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35333117

RESUMEN

Andeans with chronic mountain sickness (CMS) and polycythemia have similar maximal oxygen uptakes to healthy Andeans. Therefore, this study aimed to explore potential adaptations in convective oxygen transport, with a specific focus on sympathetically mediated vasoconstriction of nonactive skeletal muscle. In Andeans with (CMS+, n = 7) and without (CMS-, n = 9) CMS, we measured components of convective oxygen delivery, hemodynamic (arterial blood pressure via intra-arterial catheter), and autonomic responses [muscle sympathetic nerve activity (MSNA)] at rest and during steady-state submaximal cycling exercise [30% and 60% peak power output (PPO) for 5 min each]. Cycling caused similar increases in heart rate, cardiac output, and oxygen delivery at both workloads between both Andean groups. However, at 60% PPO, CMS+ had a blunted reduction in Δtotal peripheral resistance (CMS-, -10.7 ± 3.8 vs. CMS+, -4.9 ± 4.1 mmHg·L-1·min-1; P = 0.012; d = 1.5) that coincided with a greater Δforearm vasoconstriction (CMS-, -0.2 ± 0.6 vs. CMS+, 1.5 ± 1.3 mmHg·mL-1·min-1; P = 0.008; d = 1.7) and a rise in Δdiastolic blood pressure (CMS-, 14.2 ± 7.2 vs. CMS+, 21.6 ± 4.2 mmHg; P = 0.023; d = 1.2) compared with CMS-. Interestingly, although MSNA burst frequency did not change at 30% or 60% of PPO in either group, at 60% Δburst incidence was attenuated in CMS+ (P = 0.028; d = 1.4). These findings indicate that in Andeans with polycythemia, light intensity exercise elicited similar cardiovascular and autonomic responses compared with CMS-. Furthermore, convective oxygen delivery is maintained during moderate-intensity exercise despite higher peripheral resistance. In addition, the elevated peripheral resistance during exercise was not mediated by greater sympathetic neural outflow, thus other neural and/or nonneural factors are perhaps involved.NEW & NOTEWORTHY During submaximal exercise, convective oxygen transport is maintained in Andeans suffering from polycythemia. Light intensity exercise elicited similar cardiovascular and autonomic responses compared with healthy Andeans. However, during moderate-intensity exercise, we observed a blunted reduction in total peripheral resistance, which cannot be ascribed to an exaggerated increase in muscle sympathetic nerve activity, indicating possible contributions from other neural and/or nonneural mechanisms.


Asunto(s)
Mal de Altura , Policitemia , Presión Sanguínea/fisiología , Enfermedad Crónica , Hemodinámica/fisiología , Humanos , Músculo Esquelético/inervación , Oxígeno , Sistema Nervioso Simpático
4.
Circ Res ; 127(2): e1-e13, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32268833

RESUMEN

RATIONALE: Chronic exposure to hypoxia is associated with elevated sympathetic nervous activity and reduced vascular function in lowlanders, and Andean highlanders suffering from excessive erythrocytosis (EE); however, the mechanistic link between chronically elevated sympathetic nervous activity and hypoxia-induced vascular dysfunction has not been determined. OBJECTIVE: To determine the impact of heightened sympathetic nervous activity on resistance artery endothelial-dependent dilation (EDD), and endothelial-independent dilation, in lowlanders and Andean highlanders with and without EE. METHODS AND RESULTS: We tested healthy lowlanders (n=9) at sea level (344 m) and following 14 to 21 days at high altitude (4300 m), and permanent Andean highlanders with (n=6) and without (n=9) EE at high altitude. Vascular function was assessed using intraarterial infusions (3 progressive doses) of acetylcholine (ACh; EDD) and sodium nitroprusside (endothelial-independent dilation) before and after local α+ß adrenergic receptor blockade (phentolamine and propranolol). Intraarterial blood pressure, heart rate, and simultaneous brachial artery diameter and blood velocity were recorded at rest and during drug infusion. Changes in forearm vascular conductance were calculated. The main findings were (1) chronic hypoxia reduced EDD in lowlanders (changes in forearm vascular conductance from sea level: ACh1: -52.7±19.6%, ACh2: -25.4±38.7%, ACh3: -35.1±34.7%, all P≤0.02); and in Andeans with EE compared with non-EE (changes in forearm vascular conductance at ACh3: -36.4%, P=0.007). Adrenergic blockade fully restored EDD in lowlanders at high altitude, and normalized EDD between EE and non-EE Andeans. (2) Chronic hypoxia had no effect on endothelial-independent dilation in lowlanders, and no differences were detected between EE and non-EE Andeans; however, EID was increased in the non-EE Andeans after adrenergic blockade (P=0.012), but this effect was not observed in the EE Andeans. CONCLUSIONS: These data indicate that chronic hypoxia reduces EDD via heightened α-adrenergic signaling in lowlanders and in Andeans with EE. These vascular mechanisms have important implications for understanding the physiological consequences of acute and chronic high altitude adaptation.


Asunto(s)
Adaptación Fisiológica , Mal de Altura/metabolismo , Policitemia/metabolismo , Receptores Adrenérgicos/metabolismo , Vasodilatación , Acetilcolina/metabolismo , Acetilcolina/farmacología , Adrenérgicos/farmacología , Adulto , Altitud , Mal de Altura/sangre , Mal de Altura/fisiopatología , Presión Sanguínea , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiopatología , Frecuencia Cardíaca , Humanos , Masculino , Nitroprusiato/farmacología , Fentolamina/farmacología , Policitemia/etiología , Policitemia/fisiopatología , Propranolol/farmacología , Transducción de Señal , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo , Sistema Nervioso Simpático/fisiopatología , Vasodilatadores/farmacología
5.
Proc Natl Acad Sci U S A ; 116(33): 16177-16179, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31358634

RESUMEN

In contrast to Andean natives, high-altitude Tibetans present with a lower hemoglobin concentration that correlates with reproductive success and exercise capacity. Decades of physiological and genomic research have assumed that the lower hemoglobin concentration in Himalayan natives results from a blunted erythropoietic response to hypoxia (i.e., no increase in total hemoglobin mass). In contrast, herein we test the hypothesis that the lower hemoglobin concentration is the result of greater plasma volume, rather than an absence of increased hemoglobin production. We assessed hemoglobin mass, plasma volume and blood volume in lowlanders at sea level, lowlanders acclimatized to high altitude, Himalayan Sherpa, and Andean Quechua, and explored the functional relevance of volumetric hematological measures to exercise capacity. Hemoglobin mass was highest in Andeans, but also was elevated in Sherpa compared with lowlanders. Sherpa demonstrated a larger plasma volume than Andeans, resulting in a comparable total blood volume at a lower hemoglobin concentration. Hemoglobin mass was positively related to exercise capacity in lowlanders at sea level and in Sherpa at high altitude, but not in Andean natives. Collectively, our findings demonstrate a unique adaptation in Sherpa that reorientates attention away from hemoglobin concentration and toward a paradigm where hemoglobin mass and plasma volume may represent phenotypes with adaptive significance at high altitude.


Asunto(s)
Adaptación Fisiológica , Mal de Altura/sangre , Hemoglobinas/genética , Volumen Plasmático/genética , Aclimatación/genética , Adulto , Altitud , Mal de Altura/genética , Mal de Altura/fisiopatología , Volumen Sanguíneo/genética , Volumen Sanguíneo/fisiología , Ejercicio Físico/fisiología , Hemoglobinas/metabolismo , Humanos , Masculino , Perú/epidemiología , Volumen Plasmático/fisiología , Tibet/epidemiología
6.
Am J Physiol Heart Circ Physiol ; 320(5): H1851-H1861, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33710927

RESUMEN

High altitude-related excessive erythrocytosis (EE) is associated with increased cardiovascular risk. The experimental aim of this study was to determine the effects of microvesicles isolated from Andean highlanders with EE on endothelial cell inflammation, oxidative stress, apoptosis, and nitric oxide (NO) production. Twenty-six male residents of Cerro de Pasco, Peru (4,340 m), were studied: 12 highlanders without EE (age: 40 ± 4 yr; BMI: 26.4 ± 1.7; Hb: 17.4 ± 0.5 g/dL, Spo2: 86.9 ± 1.0%) and 14 highlanders with EE (43 ± 4 yr; 26.2 ± 0.9; 24.4 ± 0.4 g/dL; 79.7 ± 1.6%). Microvesicles were isolated, enumerated, and collected from plasma by flow cytometry. Human umbilical vein endothelial cells were cultured and treated with microvesicles from highlanders without and with EE. Microvesicles from highlanders with EE induced significantly higher release of interleukin (IL)-6 (89.8 ± 2.7 vs. 77.1 ± 1.9 pg/mL) and IL-8 (62.0 ± 2.7 vs. 53.3 ± 2.2 pg/mL) compared with microvesicles from healthy highlanders. Although intracellular expression of total NF-κB p65 (65.3 ± 6.0 vs. 74.9 ± 7.8.9 AU) was not significantly affected in cells treated with microvesicles from highlanders without versus with EE, microvesicles from highlanders with EE resulted in an ∼25% higher (P < 0.05) expression of p-NF-κB p65 (173.6 ± 14.3 vs. 132.8 ± 12.2 AU). Cell reactive oxygen species production was significantly higher (76.4.7 ± 5.4 vs. 56.7 ± 1.7% of control) and endothelial nitric oxide synthase (p-eNOS) activation (231.3 ± 15.5 vs. 286.6 ± 23.0 AU) and NO production (8.3 ± 0.6 vs. 10.7 ± 0.7 µM/L) were significantly lower in cells treated with microvesicles from highlanders with versus without EE. Cell apoptotic susceptibility was not significantly affected by EE-related microvesicles. Circulating microvesicles from Andean highlanders with EE increased endothelial cell inflammation and oxidative stress and reduced NO production.NEW & NOTEWORTHY In this study, we determined the effects of microvesicles isolated from Andean highlanders with excessive erythrocytosis (EE) on endothelial cell inflammation, oxidative stress, apoptosis, and NO production. Microvesicles from highlanders with EE induced a dysfunctional response from endothelial cells characterized by increased cytokine release and expression of active nuclear factor-κB and reduced nitric oxide production. Andean highlanders with EE exhibit dysfunctional circulating extracellular microvesicles that induce a proinflammatory, proatherogenic endothelial phenotype.


Asunto(s)
Aclimatación , Altitud , Micropartículas Derivadas de Células/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Policitemia/sangre , Adulto , Apoptosis , Estudios de Casos y Controles , Micropartículas Derivadas de Células/patología , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo , Perú , Fenotipo , Policitemia/patología , Policitemia/fisiopatología , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción ReIA/metabolismo
7.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R504-R512, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34346722

RESUMEN

The high-altitude maladaptation syndrome known as chronic mountain sickness (CMS) is characterized by polycythemia and is associated with proteinuria despite unaltered glomerular filtration rate. However, it remains unclear if indigenous highlanders with CMS have altered volume regulatory hormones. We assessed NH2-terminal pro-B-type natriuretic peptide (NT pro-BNP), plasma aldosterone concentration, plasma renin activity, kidney function (urinary microalbumin, glomerular filtration rate), blood volume, and estimated pulmonary artery systolic pressure (ePASP) in Andean males without (n = 14; age = 39 ± 11 yr) and with (n = 10; age = 40 ± 12 yr) CMS at 4,330 m (Cerro de Pasco, Peru). Plasma renin activity (non-CMS: 15.8 ± 7.9 ng/mL vs. CMS: 8.7 ± 5.4 ng/mL; P = 0.025) and plasma aldosterone concentration (non-CMS: 77.5 ± 35.5 pg/mL vs. CMS: 54.2 ± 28.9 pg/mL; P = 0.018) were lower in highlanders with CMS compared with non-CMS, whereas NT pro-BNP was not different between groups (non-CMS: 1394.9 ± 214.3 pg/mL vs. CMS: 1451.1 ± 327.8 pg/mL; P = 0.15). Highlanders had similar total blood volume (non-CMS: 90 ± 15 mL·kg-1 vs. CMS: 103 ± 18 mL·kg-1; P = 0.071), but Andeans with CMS had greater total red blood cell volume (non-CMS: 46 ± 10 mL·kg-1 vs. CMS: 66 ± 14 mL·kg-1; P < 0.01) and smaller plasma volume (non-CMS: 43 ± 7 mL·kg-1 vs. CMS: 35 ± 5 mL·kg-1; P = 0.03) compared with non-CMS. There were no differences in ePASP between groups (non-CMS: 32 ± 9 mmHg vs. CMS: 31 ± 8 mmHg; P = 0.6). A negative correlation was found between plasma renin activity and glomerular filtration rate in both groups (group: r = -0.66; P < 0.01; non-CMS: r = -0.60; P = 0.022; CMS: r = -0.63; P = 0.049). A smaller plasma volume in Andeans with CMS may indicate an additional CMS maladaptation to high altitude, causing potentially greater polycythemia and clinical symptoms.


Asunto(s)
Aclimatación , Mal de Altura/fisiopatología , Altitud , Volumen Sanguíneo , Policitemia/fisiopatología , Adulto , Albuminuria/etiología , Albuminuria/fisiopatología , Aldosterona/sangre , Mal de Altura/sangre , Mal de Altura/diagnóstico , Mal de Altura/etiología , Presión Arterial , Biomarcadores/sangre , Enfermedad Crónica , Tasa de Filtración Glomerular , Humanos , Riñón/fisiopatología , Masculino , Persona de Mediana Edad , Péptido Natriurético Encefálico/sangre , Fragmentos de Péptidos/sangre , Policitemia/sangre , Policitemia/diagnóstico , Policitemia/etiología , Arteria Pulmonar/fisiopatología , Renina/sangre
8.
Exp Physiol ; 106(11): 2198-2209, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34555237

RESUMEN

NEW FINDINGS: What is the central question of this study? What is the effect of sub-maximal aerobic exercise training on signs and symptoms of chronic mountain sickness (CMS) in Andean highlanders? What is the main finding and its importance? Aerobic exercise training (ET) effectively reduces haematocrit, ameliorates symptoms and improves aerobic capacity in CMS patients, suggesting that a regular aerobic ET programme might be used as a low-cost non-invasive/non-pharmacological management strategy of this syndrome. ABSTRACT: Excessive erythrocytosis is the hallmark sign of chronic mountain sickness (CMS), a debilitating syndrome associated with neurological symptoms and increased cardiovascular risk. We have shown that unlike sedentary residents at the same altitude, trained individuals maintain haematocrit within sea-level range, and thus we hypothesise that aerobic exercise training (ET) might reduce excessive haematocrit and ameliorate CMS signs and symptoms. Eight highlander men (38 ± 12 years) with CMS (haematocrit: 70.6 ± 1.9%, CMS score: 8.8 ± 1.4) from Cerro de Pasco, Peru (4340 m) participated in the study. Baseline assessment included haematocrit, CMS score, pulse oximetry, maximal cardiopulmonary exercise testing and in-office plus 24 h ambulatory blood pressure (BP) monitoring. Blood samples were collected to assess cardiometabolic, erythropoietic, and haemolysis markers. ET consisted of pedalling exercise in a cycloergometer at 60% of V̇O2peak for 1 h/day, 4 days/week for 8 weeks, and participants were assessed at weeks 4 and 8. Haematocrit and CMS score decreased significantly by week 8 (to 65.6 ± 6.6%, and 3.5 ± 0.8, respectively, P < 0.05), while V̇O2peak and maximum workload increased with ET (33.8 ± 2.4 vs. 37.2 ± 2.0 ml/min/kg, P < 0.05; and 172.5 ± 9.4 vs. 210.0 ± 27.8 W, P < 0.01; respectively). Except for an increase in high-density lipoprotein cholesterol, other blood markers and BP showed no differences. Our results suggest that reduction of haematocrit and CMS symptoms results mainly from haemodilution due to plasma volume expansion rather than to haemolysis. In conclusion, we show that ET can effectively reduce haematocrit, ameliorate symptoms and improve aerobic capacity in CMS patients, suggesting that regular aerobic exercise might be used as a low-cost non-invasive and non-pharmacological management strategy.


Asunto(s)
Mal de Altura , Altitud , Monitoreo Ambulatorio de la Presión Arterial , Enfermedad Crónica , Ejercicio Físico , Hematócrito , Humanos , Masculino
9.
Exp Physiol ; 106(6): 1335-1342, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33745204

RESUMEN

NEW FINDINGS: What is the central question of this study? Are coagulation and fibrinolytic factors disrupted in Andean highlanders with excessive erythrocytosis? What is the main finding and its importance? Excessive erythrocytosis is not associated with prothombotic disruptions in coagulation or the fibrinolytic system in Andean highlanders. Impairments in coagulation and fibrinolysis may not contribute to the increased vascular risk associated with excessive erythrocytosis. ABSTRACT: Increased coagulation and reduced fibrinolysis are central factors underlying thrombotic risk and events. High altitude-induced excessive erythrocytosis (EE) is prevalent in Andean highlanders, contributing to increased cardiovascular risk. Disruption in the coagulation-fibrinolytic axis resulting in uncontrolled fibrin deposition might underlie the increased thrombotic risk associated with high-altitude EE. The experimental aim of this study was to determine whether EE is associated with a prothrombotic blood coagulation and fibrinolytic profile in Andean highlanders. Plasma coagulation factors (von Willebrand factor and factors VII, VIII and X), fibrinolytic factors [tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1)] and D-dimer levels were determined in 26 male residents of Cerro de Pasco, Peru (4340 m a.s.l.): 12 without EE (age, 40 ± 13 years; haemoglobin, 17.4 ± 1.9 g/dl) and 14 with EE (age, 43 ± 15 years; haemoglobin, 24.4 ± 1.6 g/dl). There were no significant differences in von Willebrand factor (40.5 ± 24.8 vs. 45.5 ± 22.4%), factor VII (77.0 ± 14.5 vs. 72.5 ± 8.9%), factor VIII (55.6 ± 19.8 vs. 60.7 ± 26.8%) and factor X (73.9 ± 8.3 vs. 67.3 ± 10.9%) between the Andean highlanders without or with EE. The t-PA antigen (8.5 ± 3.6 vs. 9.6 ± 5.4 ng/ml), t-PA activity (5.5 ± 2.4 vs. 5.8 ± 1.6 IU/ml), PAI antigen (45.0 ± 33.8 vs. 40.5 ± 15.8 ng/ml), PAI-1 activity (0.24 ± 0.09 vs. 0.25 ± 0.11 IU/ml) and the molar concentration ratio of active t-PA to active PAI-1 (1:0.051 ± 0.034 vs. 1:0.046 ± 0.021 mmol/l) were also similar between the groups, as were D-dimer levels (235.0 ± 126.4 vs. 268.4 ± 173.7 ng/ml). Collectively, the results of the present study indicate that EE is not associated with a hypercoagulable, hypofibrinolytic state in Andean highlanders.


Asunto(s)
Coagulación Sanguínea , Fibrinólisis , Policitemia , Adulto , Altitud , Corazón , Hemoglobinas , Humanos , Masculino , Persona de Mediana Edad , América del Sur
10.
Exp Physiol ; 106(1): 86-103, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32237245

RESUMEN

NEW FINDINGS: What is the central question of this study? Herein, a methodological overview of our research team's (Global REACH) latest high altitude research expedition to Peru is provided. What is the main finding and its importance? The experimental objectives, expedition organization, measurements and key cohort data are discussed. The select data presented in this manuscript demonstrate the haematological differences between lowlanders and Andeans with and without excessive erythrocytosis. The data also demonstrate that exercise capacity was similar between study groups at high altitude. The forthcoming findings from our research expedition will contribute to our understanding of lowlander and indigenous highlander high altitude adaptation. ABSTRACT: In 2016, the international research team Global Research Expedition on Altitude Related Chronic Health (Global REACH) was established and executed a high altitude research expedition to Nepal. The team consists of ∼45 students, principal investigators and physicians with the common objective of conducting experiments focused on high altitude adaptation in lowlanders and in highlanders with lifelong exposure to high altitude. In 2018, Global REACH travelled to Peru, where we performed a series of experiments in the Andean highlanders. The experimental objectives, organization and characteristics, and key cohort data from Global REACH's latest research expedition are outlined herein. Fifteen major studies are described that aimed to elucidate the physiological differences in high altitude acclimatization between lowlanders (n = 30) and Andean-born highlanders with (n = 22) and without (n = 45) excessive erythrocytosis. After baseline testing in Kelowna, BC, Canada (344 m), Global REACH travelled to Lima, Peru (∼80 m) and then ascended by automobile to Cerro de Pasco, Peru (∼4300 m), where experiments were conducted over 25 days. The core studies focused on elucidating the mechanism(s) governing cerebral and peripheral vascular function, cardiopulmonary regulation, exercise performance and autonomic control. Despite encountering serious logistical challenges, each of the proposed studies was completed at both sea level and high altitude, amounting to ∼780 study sessions and >3000 h of experimental testing. Participant demographics and data relating to acid-base balance and exercise capacity are presented. The collective findings will contribute to our understanding of how lowlanders and Andean highlanders have adapted under high altitude stress.


Asunto(s)
Adaptación Fisiológica/fisiología , Mal de Altura/fisiopatología , Corazón/fisiopatología , Hipoxia/fisiopatología , Adulto , Altitud , Enfermedad Crónica , Estudios de Cohortes , Expediciones , Humanos , Masculino , Perú
11.
Exp Physiol ; 106(1): 104-116, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32271969

RESUMEN

NEW FINDINGS: What is the central question of this study? Does chronic mountain sickness (CMS) alter sympathetic neural control and arterial baroreflex regulation of blood pressure in Andean (Quechua) highlanders? What is the main finding and its importance? Compared to healthy Andean highlanders, basal sympathetic vasomotor outflow is lower, baroreflex control of muscle sympathetic nerve activity is similar, supine heart rate is lower and cardiovagal baroreflex gain is greater in mild CMS. Taken together, these findings reflect flexibility in integrative regulation of blood pressure that may be important when blood viscosity and blood volume are elevated in CMS. ABSTRACT: The high-altitude maladaptation syndrome chronic mountain sickness (CMS) is characterized by excessive erythrocytosis and frequently accompanied by accentuated arterial hypoxaemia. Whether altered autonomic cardiovascular regulation is apparent in CMS is unclear. Therefore, during the 2018 Global REACH expedition to Cerro de Pasco, Peru (4383 m), we assessed integrative control of blood pressure (BP) and determined basal sympathetic vasomotor outflow and arterial baroreflex function in eight Andean natives with CMS ([Hb] 22.6 ± 0.9 g·dL-1 ) and seven healthy highlanders ([Hb] 19.3 ± 0.8 g·dL-1 ). R-R interval (RRI, electrocardiogram), beat-by-beat BP (photoplethysmography) and muscle sympathetic nerve activity (MSNA; microneurography) were recorded at rest and during pharmacologically induced changes in BP (modified Oxford test). Although [Hb] and blood viscosity (7.8 ± 0.7 vs. 6.6 ± 0.7 cP; d = 1.7, P = 0.01) were elevated in CMS compared to healthy highlanders, cardiac output, total peripheral resistance and mean BP were similar between groups. The vascular sympathetic baroreflex MSNA set-point (i.e. MSNA burst incidence) and reflex gain (i.e. responsiveness) were also similar between groups (MSNA set-point, d = 0.75, P = 0.16; gain, d = 0.2, P = 0.69). In contrast, in CMS the cardiovagal baroreflex operated around a longer RRI (960 ± 159 vs. 817 ± 50 ms; d = 1.4, P = 0.04) with a greater reflex gain (17.2 ± 6.8 vs. 8.8 ± 2.6 ms·mmHg-1 ; d = 1.8, P = 0.01) versus healthy highlanders. Basal sympathetic vasomotor activity was also lower compared to healthy highlanders (33 ± 11 vs. 45 ± 13 bursts·min-1 ; d = 1.0, P = 0.08). In conclusion, our findings indicate adaptive differences in basal sympathetic vasomotor activity and heart rate compensate for the haemodynamic consequences of excessive erythrocyte volume and contribute to integrative blood pressure regulation in Andean highlanders with mild CMS.


Asunto(s)
Mal de Altura/fisiopatología , Presión Arterial/fisiología , Presión Sanguínea/fisiología , Volumen Sanguíneo/fisiología , Sistema Nervioso Simpático/fisiopatología , Adulto , Barorreflejo/fisiología , Enfermedad Crónica , Hemodinámica/fisiología , Humanos , Hipoxia/fisiopatología , Masculino , Persona de Mediana Edad , Músculo Esquelético/fisiología , Fenómenos Fisiológicos Musculoesqueléticos , Adulto Joven
12.
Am J Physiol Renal Physiol ; 319(6): F1081-F1089, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32996319

RESUMEN

Early acclimatization to high altitude is characterized by various respiratory, hematological, and cardiovascular adaptations that serve to restore oxygen delivery to tissue. However, less is understood about renal function and the role of renal oxygen delivery (RDO2) during high altitude acclimatization. We hypothesized that 1) RDO2 would be reduced after 12 h of high altitude exposure (high altitude day 1) but restored to sea level values after 1 wk (high altitude day 7) and 2) RDO2 would be associated with renal reactivity, an index of acid-base compensation at high altitude. Twenty-four healthy lowlander participants were tested at sea level (344 m, Kelowna, BC, Canada) and on day 1 and day 7 at high altitude (4,330 m, Cerro de Pasco, Peru). Cardiac output, renal blood flow, and arterial and venous blood sampling for renin-angiotensin-aldosterone system hormones and NH2-terminal pro-B-type natriuretic peptides were collected at each time point. Renal reactivity was calculated as follows: (Δarterial bicarbonate)/(Δarterial Pco2) between sea level and high altitude day 1 and sea level and high altitude day 7. The main findings were that 1) RDO2 was initially decreased at high altitude compared with sea level (ΔRDO2: -22 ± 17%, P < 0.001) but was restored to sea level values on high altitude day 7 (ΔRDO2: -6 ± 14%, P = 0.36). The observed improvements in RDO2 resulted from both changes in renal blood flow (Δ from high altitude day 1: +12 ± 11%, P = 0.008) and arterial oxygen content (Δ from high altitude day 1: +44.8 ± 17.7%, P = 0.006) and 2) renal reactivity was positively correlated with RDO2 on high altitude day 7 (r = 0.70, P < 0.001) but not high altitude day 1 (r = 0.26, P = 0.29). These findings characterize the temporal responses of renal function during early high altitude acclimatization and the influence of RDO2 in the regulation of acid-base balance.


Asunto(s)
Aclimatación , Altitud , Riñón/metabolismo , Consumo de Oxígeno , Oxígeno/metabolismo , Equilibrio Ácido-Base , Adulto , Femenino , Humanos , Masculino , Factores de Tiempo , Adulto Joven
13.
Am J Physiol Regul Integr Comp Physiol ; 318(1): R49-R56, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31617751

RESUMEN

Excessive erythrocytosis (EE) is the main sign of chronic mountain sickness (CMS), a maladaptive clinical syndrome prevalent in Andean and other high-altitude populations worldwide. The pathophysiological mechanism of EE is still controversial, as physiological variability of systemic respiratory, cardiovascular, and hormonal responses to chronic hypoxemia complicates the identification of underlying causes. Induced pluripotent stem cells derived from CMS highlanders showed increased expression of genes relevant to the regulation of erythropoiesis, angiogenesis, cardiovascular, and steroid-hormone function that appear to explain the exaggerated erythropoietic response. However, the cellular response to hypoxia in native CMS cells is yet unknown. This study had three related aims: to determine the hypoxic proliferation of native erythroid progenitor burst-forming unit-erythroid (BFU-E) cells derived from CMS and non-CMS peripheral blood mononuclear cells; to examine their sentrin-specific protease 1 (SENP1), GATA-binding factor 1 (GATA1), erythropoietin (EPO), and EPO receptor (EPOR) expression; and to investigate the functional upstream role of SENP1 in native progenitor differentiation into erythroid precursors. Native CMS BFU-E colonies showed increased proliferation under hypoxic conditions compared with non-CMS cells, together with an upregulated expression of SENP1, GATA1, EPOR; and no difference in EPO expression. Knock-down of the SENP1 gene abolished the augmented proliferative response. Thus, we demonstrate that native CMS progenitor cells produce a larger proportion of erythroid precursors under hypoxia and that SENP1 is essential for proliferation. Our findings suggest a significant intrinsic component for developing EE in CMS highlanders at the cellular and gene expression level that could be further enhanced by systemic factors such as alterations in respiratory control, or differential hormonal patterns.


Asunto(s)
Mal de Altura/epidemiología , Altitud , Células Precursoras Eritroides/metabolismo , Oxígeno/metabolismo , Oxígeno/farmacología , Enfermedad Crónica , Eritropoyetina/sangre , Regulación de la Expresión Génica/efectos de los fármacos , Predisposición Genética a la Enfermedad , Homeostasis , Humanos , Hipoxia , Hierro/metabolismo , Leucocitos Mononucleares , Transcriptoma
14.
Ann Hum Genet ; 83(3): 171-176, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30719713

RESUMEN

EGLN1 encodes the hypoxia-inducible factor (HIF) pathway prolyl hydroxylase 2 (PHD2) that serves as an oxygen-sensitive regulator of HIF activity. The EGLN1 locus exhibits a signature of positive selection in Tibetan and Andean populations and is associated with hemoglobin concentration in Tibetans. Recent reports provide evidence for functional roles of protein-coding variants within the first exon of EGLN1 (rs186996510, rs12097901) that are linked to an adaptive signal in Tibetans, yet whether these same variants are present and contribute to adaptation in Andean highlanders is unknown. We determined the frequencies of these adaptive Tibetan alleles in Quechua Andeans resident at high altitude (4,350 m) in addition to individuals of Nepali ancestry resident at sea level. The rs186996510 C (minor) allele previously found at high frequency in Tibetans is absent in Andean (G: 100%) and rare among Nepali (C: 11.8%, G: 88.2%) cohorts. The minor G allele of rs12097901 is found at similarly low frequencies in Andeans (G: 12.7%, C: 87.3%) and Nepalis (G: 23.5%, C: 76.5%) compared to Tibetans. These results suggest that adaptation involving EGLN1 in Andeans involves different mechanisms than those described in Tibetans. The precise Andean adaptive variants remain to be determined.


Asunto(s)
Altitud , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Adaptación Fisiológica/genética , Adulto , Anciano , Alelos , Exones , Femenino , Frecuencia de los Genes , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Nepal , Perú , Polimorfismo de Nucleótido Simple , Tibet , Adulto Joven
15.
Am J Physiol Heart Circ Physiol ; 317(5): H991-H1001, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31441692

RESUMEN

Excessive erythrocytosis [EE; hemoglobin concentration (Hb) ≥ 21 g/dL in adult men] is a maladaptive high-altitude pathology associated with increased cardiovascular risk and reduced reactive hyperemia flow-mediated dilation (FMD); however, whether a similar impairment occurs in response to more commonly encountered sustained increases in shear stress [sustained stimulus (SS)-FMD] over a range of overlapping stimuli is unknown. We characterized SS-FMD in response to handgrip exercise in Andeans with and without EE in Cerro de Pasco, Peru (4,330 m). Andean highlanders with EE (n = 17, Hb = 23.2 ± 1.2 g/dL) and without EE (n = 23, Hb = 18.7 ± 1.9 g/dL) performed 3 min of rhythmic handgrip exercise at 20, 35, and 50% of maximum voluntary contraction (MVC). Duplex ultrasound was used to continuously record blood velocity and diameter in the brachial artery, and blood viscosity was measured to accurately calculate shear stress. Although baseline shear stress did not differ, Andeans with EE had 22% lower shear stress than Andeans without at 50% MVC (P = 0.004). At 35 and 50% MVC, SS-FMD was 2.1 ± 2.0 and 2.8 ± 2.7% in Andeans with EE compared with 4.1 ± 3.4 and 7.5 ± 4.5% in those without (P = 0.048 and P < 0.001). The stimulus-response slope (∆shear stress vs. ∆diameter) was lower in Andeans with EE compared with Andeans without (P = 0.028). This slope was inversely related to Hb in Andeans with EE (r2 = 0.396, P = 0.007). A reduced SS-FMD in response to small muscle mass exercise in Andeans with EE indicates a generalized reduction in endothelial sensitivity to shear stress, which may contribute to increased cardiovascular risk in this population.NEW & NOTEWORTHY High-altitude excessive erythrocytosis (EE; hemoglobin concentration ≥ 21 g/dL) is a maladaptation to chronic hypoxia exposure and is associated with increased cardiovascular risk. We examined flow-mediated dilation (FMD) in response to sustained elevations in shear stress achieved using progressive handgrip exercise [sustained stimulus (SS)-FMD] in Andean highlanders with and without EE at 4,330 m. Andeans with EE demonstrated lower SS-FMD compared with those without. Heightened hemoglobin concentration was related to lower SS-FMD in Andeans with EE.


Asunto(s)
Aclimatación , Mal de Altura/fisiopatología , Altitud , Arteria Braquial/fisiopatología , Policitemia/fisiopatología , Vasodilatación , Adulto , Mal de Altura/sangre , Mal de Altura/diagnóstico por imagen , Biomarcadores/sangre , Velocidad del Flujo Sanguíneo , Viscosidad Sanguínea , Arteria Braquial/diagnóstico por imagen , Estudios de Casos y Controles , Fuerza de la Mano , Hemoglobinas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Contracción Muscular , Perú , Policitemia/sangre , Policitemia/diagnóstico , Flujo Sanguíneo Regional , Estrés Mecánico , Factores de Tiempo , Ultrasonografía Doppler Dúplex
18.
J Physiol ; 592(5): 991-1007, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24297849

RESUMEN

Carbonic anhydrase enzymes (CAs) catalyse the reversible hydration of CO2 to H+ and HCO3- ions. This catalysis is proposed to be harnessed by acid/base transporters, to facilitate their transmembrane flux activity, either through direct protein-protein binding (a 'transport metabolon') or local functional interaction. Flux facilitation has previously been investigated by heterologous co-expression of relevant proteins in host cell lines/oocytes. Here, we examine the influence of intrinsic CA activity on membrane HCO3- or H+ transport via the native acid-extruding proteins, Na+ -HCO3- cotransport (NBC) and Na+ / H+ exchange (NHE), expressed in enzymically isolated mammalian ventricular myocytes. Effects of intracellular and extracellular (exofacial) CA (CAi and CAe) are distinguished using membrane-permeant and -impermeant pharmacological CA inhibitors, while measuring transporter activity in the intact cell using pH and Na+ fluorophores. We find that NBC, but not NHE flux is enhanced by catalytic CA activity, with facilitation being confined to CAi activity alone. Results are quantitatively consistent with a model where CAi catalyses local H+ ion delivery to the NBC protein, assisting the subsequent (uncatalysed) protonation and removal of imported HCO3- ions. In well-superfused myocytes, exofacial CA activity is superfluous, most likely because extracellular CO2/HCO3- buffer is clamped at equilibrium. The CAi insensitivity of NHE flux suggests that, in the native cell, intrinsic mobile buffer-shuttles supply sufficient intracellular H+ ions to this transporter, while intrinsic buffer access to NBC proteins is restricted. Our results demonstrate a selective CA facilitation of acid/base transporters in the ventricular myocyte, implying a specific role for the intracellular enzyme in HCO3- transport, and hence pHi regulation in the heart.


Asunto(s)
Bicarbonatos/metabolismo , Anhidrasas Carbónicas/metabolismo , Ventrículos Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sodio/metabolismo , Animales , Bicarbonatos/química , Células Cultivadas , Activación Enzimática , Ventrículos Cardíacos/citología , Concentración de Iones de Hidrógeno , Masculino , Ratas , Ratas Sprague-Dawley
19.
Nat Rev Dis Primers ; 10(1): 43, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902312

RESUMEN

Millions of people visit high-altitude regions annually and more than 80 million live permanently above 2,500 m. Acute high-altitude exposure can trigger high-altitude illnesses (HAIs), including acute mountain sickness (AMS), high-altitude cerebral oedema (HACE) and high-altitude pulmonary oedema (HAPE). Chronic mountain sickness (CMS) can affect high-altitude resident populations worldwide. The prevalence of acute HAIs varies according to acclimatization status, rate of ascent and individual susceptibility. AMS, characterized by headache, nausea, dizziness and fatigue, is usually benign and self-limiting, and has been linked to hypoxia-induced cerebral blood volume increases, inflammation and related trigeminovascular system activation. Disruption of the blood-brain barrier leads to HACE, characterized by altered mental status and ataxia, and increased pulmonary capillary pressure, and related stress failure induces HAPE, characterized by dyspnoea, cough and exercise intolerance. Both conditions are progressive and life-threatening, requiring immediate medical intervention. Treatment includes supplemental oxygen and descent with appropriate pharmacological therapy. Preventive measures include slow ascent, pre-acclimatization and, in some instances, medications. CMS is characterized by excessive erythrocytosis and related clinical symptoms. In severe CMS, temporary or permanent relocation to low altitude is recommended. Future research should focus on more objective diagnostic tools to enable prompt treatment, improved identification of individual susceptibilities and effective acclimatization and prevention options.


Asunto(s)
Mal de Altura , Altitud , Humanos , Mal de Altura/fisiopatología , Mal de Altura/epidemiología , Mal de Altura/complicaciones , Aclimatación/fisiología , Edema Encefálico/fisiopatología , Edema Encefálico/etiología , Edema Encefálico/epidemiología , Edema Pulmonar/fisiopatología , Edema Pulmonar/etiología , Edema Pulmonar/epidemiología , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/epidemiología , Hipertensión Pulmonar/etiología , Hipoxia/fisiopatología , Hipoxia/complicaciones , Hipoxia/etiología
20.
Sci Adv ; 10(6): eadj5661, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38335297

RESUMEN

Hypoxia-inducible factor pathway genes are linked to adaptation in both human and nonhuman highland species. EPAS1, a notable target of hypoxia adaptation, is associated with relatively lower hemoglobin concentration in Tibetans. We provide evidence for an association between an adaptive EPAS1 variant (rs570553380) and the same phenotype of relatively low hematocrit in Andean highlanders. This Andean-specific missense variant is present at a modest frequency in Andeans and absent in other human populations and vertebrate species except the coelacanth. CRISPR-base-edited human cells with this variant exhibit shifts in hypoxia-regulated gene expression, while metabolomic analyses reveal both genotype and phenotype associations and validation in a lowland population. Although this genocopy of relatively lower hematocrit in Andean highlanders parallels well-replicated findings in Tibetans, it likely involves distinct pathway responses based on a protein-coding versus noncoding variants, respectively. These findings illuminate how unique variants at EPAS1 contribute to the same phenotype in Tibetans and a subset of Andean highlanders despite distinct evolutionary trajectories.


Asunto(s)
Adaptación Fisiológica , Altitud , Hematócrito , Pueblos Sudamericanos , Humanos , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Pueblos del Este de Asia , Hipoxia/genética , Hipoxia/metabolismo , Mutación Missense/genética , Pueblos Sudamericanos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA