RESUMEN
Research into potential implications of climate change on flood hazard has made significant progress over the past decade, yet efforts to translate this research into practical guidance for flood estimation remain in their infancy. In this commentary, we address the question: how best can practical flood guidance be modified to incorporate the additional uncertainty due to climate change? We begin by summarizing the physical causes of changes in flooding and then discuss common methods of design flood estimation in the context of uncertainty. We find that although climate science operates across aleatory, epistemic and deep uncertainty, engineering practitioners generally only address aleatory uncertainty associated with natural variability through standards-based approaches. A review of existing literature and flood guidance reveals that although research efforts in hydrology do not always reflect the methods used in flood estimation, significant progress has been made with many jurisdictions around the world now incorporating climate change in their flood guidance. We conclude that the deep uncertainty that climate change brings signals a need to shift towards more flexible design and planning approaches, and future research effort should focus on providing information that supports the range of flood estimation methods used in practice. This article is part of a discussion meeting issue 'Intensification of short-duration rainfall extremes and implications for flash flood risks'.
RESUMEN
A large number of recent studies have aimed at understanding short-duration rainfall extremes, due to their impacts on flash floods, landslides and debris flows and potential for these to worsen with global warming. This has been led in a concerted international effort by the INTENSE Crosscutting Project of the GEWEX (Global Energy and Water Exchanges) Hydroclimatology Panel. Here, we summarize the main findings so far and suggest future directions for research, including: the benefits of convection-permitting climate modelling; towards understanding mechanisms of change; the usefulness of temperature-scaling relations; towards detecting and attributing extreme rainfall change; and the need for international coordination and collaboration. Evidence suggests that the intensity of long-duration (1 day+) heavy precipitation increases with climate warming close to the Clausius-Clapeyron (CC) rate (6-7% K-1), although large-scale circulation changes affect this response regionally. However, rare events can scale at higher rates, and localized heavy short-duration (hourly and sub-hourly) intensities can respond more strongly (e.g. 2 × CC instead of CC). Day-to-day scaling of short-duration intensities supports a higher scaling, with mechanisms proposed for this related to local-scale dynamics of convective storms, but its relevance to climate change is not clear. Uncertainty in changes to precipitation extremes remains and is influenced by many factors, including large-scale circulation, convective storm dynamics andstratification. Despite this, recent research has increased confidence in both the detectability and understanding of changes in various aspects of intense short-duration rainfall. To make further progress, the international coordination of datasets, model experiments and evaluations will be required, with consistent and standardized comparison methods and metrics, and recommendations are made for these frameworks. This article is part of a discussion meeting issue 'Intensification of short-duration rainfall extremes and implications for flash flood risks'.
RESUMEN
This research demonstrates how the use of high-resolution rain-gauge data for quality control (QC) significantly changes extreme rainfall estimates, with implications in scientific, meteorological and engineering applications. Current open QC algorithms only consider data at hourly or daily accumulations. Here we present the first open QC algorithm utilising sub-hourly rain-gauge data from official networks at a national, multi-decade scale. We use data from 1,301 rain-gauges in Great Britain (GB) to develop a threshold-based methodology for sub-hourly QC that can be used to complement existing, freely available hourly QC methods by developing an algorithm for sub-hourly QC that uses monthly thresholds for 1 hr, 15 min and 1 min rainfall totals. We then evaluated the effect of combining these QC procedures on rainfall distributions using graphical and statistical methods, with an emphasis on extreme value analysis. We demonstrate that the additional information in sub-hourly rainfall allows our new QC to remove spuriously large values undetected by existing methods which generate errors in extreme rainfall estimates. This results in statistically significant differences between extreme rainfall estimates for 15 min and 1 hr accumulations, with smaller differences found for 6 and 24 hr totals. We also find that extremes in the distributions of 15 min and 1 hr rainfall accumulations tend to grow more rapidly with return period than for longer accumulation periods. We observe similarities between the shape parameter populations for 15 min and 1 hr rainfall accumulations, suggesting that hourly records may be used to improve shape parameter estimates for extreme sub-hourly rainfall in GB. Sub-hourly QC moderates unrealistically large return level estimates for short-duration rainfall, with beneficial impacts on data required for the design of urban drainage infrastructure and the validation of high-resolution climate models.