Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 391(4): 334-342, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39018528

RESUMEN

KRAS gain-of-function mutations are frequently observed in sporadic arteriovenous malformations. The mechanisms underlying the progression of such KRAS-driven malformations are still incompletely understood, and no treatments for the condition are approved. Here, we show the effectiveness of sotorasib, a specific KRAS G12C inhibitor, in reducing the volume of vascular malformations and improving survival in two mouse models carrying a mosaic Kras G12C mutation. We then administered sotorasib to two adult patients with severe KRAS G12C-related arteriovenous malformations. Both patients had rapid reductions in symptoms and arteriovenous malformation size. Targeting KRAS G12C appears to be a promising therapeutic approach for patients with KRAS G12C-related vascular malformations. (Funded by the European Research Council and others.).


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Ratones , Animales , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Femenino , Masculino , Malformaciones Arteriovenosas/genética , Adulto , Piridinas/uso terapéutico , Modelos Animales de Enfermedad , Mutación , Persona de Mediana Edad , Mutación con Ganancia de Función , Piperazinas/uso terapéutico , Pirimidinas
2.
Blood ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38518104

RESUMEN

Given the poor outcome of refractory and relapsing T-ALL, identifying prognostic markers is still challenging. Using SNP-array analysis, we provide a comprehensive analysis of genomic imbalances in a cohort of 317 newly-diagnosed T-ALL patients including 135 children and 182 adults with respect to clinical and biological features and outcomes. SNP-array results identified at least one somatic genomic imbalance in virtually all T-ALL patients (~96%). Del(9)(p21) (~70%) and UPD(9)p21)/CDKN2A/B (~28%) were the most frequent genomic imbalances. Unexpectedly del(13q14)/RB1/DLEU1 (~14%) was the second more frequent CNV followed by del(6)(q15)/CASP8AP2 (~11%), del(1)(p33)/SIL-TAL1 (~11%), del(12)(p13)ETV6/CDKN1B (~9%), del(18)(p11)/PTPN2 (~9%), del(1)(p36)/RPL22 (~9%), and del(17)(q11)/NF1/SUZ12 (~8%). SNP-array also revealed distinct profiles of genomic imbalances according to age, immunophenotype, and oncogenetic subgroups. In particular, adult T-ALL patients demonstrated a significantly higher incidence of del(1)(p36)/RPL22, and del(13)(q14)/RB1/DLEU1, and lower incidence of del(9)(p21) and UPD(9p21)/CDKN2A/B. We determined a threshold of 15 genomic imbalances to stratify patients into high- and low-risk groups of relapse. Survival analysis also revealed the poor outcome, despite the low number of affected cases, conferred by the presence of chromothripsis (n=6, ~2%), del(16)(p13)/CREBBP (n=15, ~5%) as well as the newly identified recurrent gain at 6q27 involving MLLT4 (n=10, ~3%). Genomic complexity, del(16)(p13)/CREBBP and gain at 6q27 involving MLLT4 maintained their significance in multivariate analysis for survival outcome. Our study thus demonstrated that whole genome analysis of imbalances provides new insights to refine risk stratification in T-ALL.

3.
Immunity ; 45(3): 610-625, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27612641

RESUMEN

The nature of gut intraepithelial lymphocytes (IELs) lacking antigen receptors remains controversial. Herein we showed that, in humans and in mice, innate intestinal IELs expressing intracellular CD3 (iCD3(+)) differentiate along an Id2 transcription factor (TF)-independent pathway in response to TF NOTCH1, interleukin-15 (IL-15), and Granzyme B signals. In NOTCH1-activated human hematopoietic precursors, IL-15 induced Granzyme B, which cleaved NOTCH1 into a peptide lacking transcriptional activity. As a result, NOTCH1 target genes indispensable for T cell differentiation were silenced and precursors were reprogrammed into innate cells with T cell marks including intracellular CD3 and T cell rearrangements. In the intraepithelial lymphoma complicating celiac disease, iCD3(+) innate IELs acquired gain-of-function mutations in Janus kinase 1 or Signal transducer and activator of transcription 3, which enhanced their response to IL-15. Overall we characterized gut T cell-like innate IELs, deciphered their pathway of differentiation and showed their malignant transformation in celiac disease.


Asunto(s)
Enfermedad Celíaca/inmunología , Interleucina-15/inmunología , Intestinos/inmunología , Linfoma/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Complejo CD3/inmunología , Diferenciación Celular/inmunología , Células Cultivadas , Granzimas/inmunología , Humanos , Proteína 2 Inhibidora de la Diferenciación/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Receptor Notch1/inmunología , Factor de Transcripción STAT3/inmunología , Transducción de Señal/inmunología , Transcripción Genética/inmunología
4.
J Allergy Clin Immunol ; 153(1): 203-215, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37793571

RESUMEN

BACKGROUND: The autoimmune lymphoproliferative syndrome (ALPS) is a noninfectious and nonmalignant lymphoproliferative disease frequently associated with autoimmune cytopenia resulting from defective FAS signaling. We previously described germline monoallelic FAS (TNFRSF6) haploinsufficient mutations associated with somatic events, such as loss of heterozygosity on the second allele of FAS, as a cause of ALPS-FAS. These somatic events were identified by sequencing FAS in DNA from double-negative (DN) T cells, the pathognomonic T-cell subset in ALPS, in which the somatic events accumulated. OBJECTIVE: We sought to identify whether a somatic event affecting the FAS-associated death domain (FADD) gene could be related to the disease onset in 4 unrelated patients with ALPS carrying a germline monoallelic mutation of the FADD protein inherited from a healthy parent. METHODS: We sequenced FADD and performed array-based comparative genomic hybridization using DNA from sorted CD4+ or DN T cells. RESULTS: We found homozygous FADD mutations in the DN T cells from all 4 patients, which resulted from uniparental disomy. FADD deficiency caused by germline heterozygous FADD mutations associated with a somatic loss of heterozygosity was a phenocopy of ALPS-FAS without the more complex symptoms reported in patients with germline biallelic FADD mutations. CONCLUSIONS: The association of germline and somatic events affecting the FADD gene is a new genetic cause of ALPS.


Asunto(s)
Síndrome Linfoproliferativo Autoinmune , Proteína de Dominio de Muerte Asociada a Fas , Humanos , Apoptosis/genética , Enfermedades Autoinmunes/genética , Síndrome Linfoproliferativo Autoinmune/genética , Hibridación Genómica Comparativa , ADN , Receptor fas/genética , Proteína de Dominio de Muerte Asociada a Fas/genética , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Células Germinativas/patología , Mutación
5.
Mol Cancer ; 22(1): 108, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430263

RESUMEN

The reintegration of excised signal joints resulting from human V(D)J recombination was described as a potent source of genomic instability in human lymphoid cancers. However, such molecular events have not been recurrently reported in clinical patient lymphoma/leukemia samples. Using a specifically designed NGS-capture pipeline, we here demonstrated the reintegration of T-cell receptor excision circles (TRECs) in 20/1533 (1.3%) patients with T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoblastic lymphoma (T-LBL). Remarkably, the reintegration of TREC recurrently targeted the tumor suppressor gene, ZFP36L2, in 17/20 samples. Thus, our data identified a new and hardly detectable mechanism of gene deregulation in lymphoid cancers providing new insights in human oncogenesis.


Asunto(s)
Carcinogénesis , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Inestabilidad Genómica , Células Madre Hematopoyéticas , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Factores de Transcripción
6.
Kidney Int ; 103(1): 70-76, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36108807

RESUMEN

Long-term multilineage hematopoietic donor chimerism occurs sporadically in patients who receive a transplanted solid organ enriched in lymphoid tissues such as the intestine or liver. There is currently no evidence for the presence of kidney-resident hematopoietic stem cells in any mammal species. Graft-versus-host-reactive donor T cells promote engraftment of graft-derived hematopoietic stem cells by making space in the bone marrow. Here, we report full (over 99%) multilineage, donor-derived hematopoietic chimerism in a pediatric kidney transplant recipient with syndromic combined immune deficiency that leads to transplant tolerance. Interestingly, we found that the human kidney-derived hematopoietic stem cells took up long-term residence in the recipient's bone marrow and gradually replaced their host counterparts, leading to blood type conversion and full donor chimerism of both lymphoid and myeloid lineages. Thus, our findings highlight the existence of human kidney-derived hematopoietic stem cells with a self-renewal ability able to support multilineage hematopoiesis.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Animales , Humanos , Niño , Médula Ósea , Linfocitos T , Hematopoyesis , Riñón , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Médula Ósea , Mamíferos
7.
Gut ; 71(3): 497-508, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33579790

RESUMEN

OBJECTIVE: Enteropathy-associated T-cell lymphoma (EATL) is a rare but severe complication of coeliac disease (CeD), often preceded by low-grade clonal intraepithelial lymphoproliferation, referred to as type II refractory CeD (RCDII). Knowledge on underlying oncogenic mechanisms remains scarce. Here, we analysed and compared the mutational landscape of RCDII and EATL in order to identify genetic drivers of CeD-associated lymphomagenesis. DESIGN: Pure populations of RCDII-cells derived from intestinal biopsies (n=9) or sorted from blood (n=2) were analysed by whole exome sequencing, comparative genomic hybridisation and RNA sequencing. Biopsies from RCDII (n=50), EATL (n=19), type I refractory CeD (n=7) and uncomplicated CeD (n=18) were analysed by targeted next-generation sequencing. Moreover, functional in vitro studies and drug testing were performed in RCDII-derived cell lines. RESULTS: 80% of RCDII and 90% of EATL displayed somatic gain-of-functions mutations in the JAK1-STAT3 pathway, including a remarkable p.G1097 hotspot mutation in the JAK1 kinase domain in approximately 50% of cases. Other recurrent somatic events were deleterious mutations in nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) regulators TNFAIP3 and TNIP3 and potentially oncogenic mutations in TET2, KMT2D and DDX3X. JAK1 inhibitors, and the proteasome inhibitor bortezomib could block survival and proliferation of malignant RCDII-cell lines. CONCLUSION: Mutations activating the JAK1-STAT3 pathway appear to be the main drivers of CeD-associated lymphomagenesis. In concert with mutations in negative regulators of NF-κB, they may favour the clonal emergence of malignant lymphocytes in the cytokine-rich coeliac intestine. The identified mutations are attractive therapeutic targets to treat RCDII and block progression towards EATL.


Asunto(s)
Enfermedad Celíaca/complicaciones , Enfermedad Celíaca/genética , Linfoma de Células T Asociado a Enteropatía/etiología , Mutación con Ganancia de Función/genética , Linfocitos/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad Celíaca/patología , Estudios de Cohortes , Linfoma de Células T Asociado a Enteropatía/patología , Femenino , Francia , Humanos , Janus Quinasa 1/genética , Masculino , Persona de Mediana Edad , Factor de Transcripción STAT3/genética , Adulto Joven
8.
Blood ; 120(16): 3298-309, 2012 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-22948044

RESUMEN

Chromosomal translocations involving the TCR loci represent one of the most recurrent oncogenic hallmarks of T-cell acute lymphoblastic leukemia (T-ALL) and are generally believed to result from illegitimate V(D)J recombination events. However, molecular characterization and evaluation of the extent of recombinase involvement at the TCR-oncogene junction has not been fully evaluated. In the present study, screening for TCRß and TCRα/δ translocations by FISH and ligation-mediated PCR in 280 T-ALLs allowed the identification of 4 previously unreported TCR-translocated oncogene partners: GNAG, LEF1, NKX2-4, and IL2RB. Molecular mapping of genomic junctions from TCR translocations showed that the majority of oncogenic partner breakpoints are not recombinase mediated and that the regulatory elements predominantly used to drive oncogene expression differ markedly in TCRß (which are exclusively enhancer driven) and TCRα/δ (which use an enhancer-independent cryptic internal promoter) translocations. Our data also imply that oncogene activation takes place at a very immature stage of thymic development, when Dδ2-Dδ3/Dδ3-Jδ1 and Dß-Jß rearrangements occur, whereas the bulk leukemic maturation arrest occurs at a much later (cortical) stage. These observations have implications for T-ALL therapy, because the preleukemic early thymic clonogenic population needs to be eradicated and its disappearance monitored.


Asunto(s)
Reordenamiento Génico de la Cadena alfa de los Receptores de Antígenos de los Linfocitos T/genética , Reordenamiento Génico de la Cadena beta de los Receptores de Antígenos de los Linfocitos T/genética , Reordenamiento Génico de la Cadena delta de los Receptores de Antígenos de los Linfocitos T/genética , Oncogenes/fisiología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Recombinación Genética/genética , Translocación Genética , Adolescente , Adulto , Secuencia de Bases , Niño , Preescolar , Mapeo Cromosómico , ADN de Neoplasias/genética , Humanos , Hibridación Fluorescente in Situ , Lactante , Persona de Mediana Edad , Datos de Secuencia Molecular , Reacción en Cadena en Tiempo Real de la Polimerasa , Homología de Secuencia de Ácido Nucleico , Adulto Joven
9.
Signal Transduct Target Ther ; 9(1): 146, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38880808

RESUMEN

Sporadic venous malformations are genetic conditions primarily caused by somatic gain-of-function mutation of PIK3CA or TEK, an endothelial transmembrane receptor signaling through PIK3CA. Venous malformations are associated with pain, bleedings, thrombosis, pulmonary embolism, esthetic deformities and, in severe cases, life-threatening situations. No authorized medical treatment exists for patients with venous malformations. Here, we created a genetic mouse model of PIK3CA-related capillary venous malformations that replicates patient phenotypes. We showed that these malformations only partially signal through AKT proteins. We compared the efficacy of different drugs, including rapamycin, a mTORC1 inhibitor, miransertib, an AKT inhibitor and alpelisib, a PI3Kα inhibitor at improving the lesions seen in the mouse model. We demonstrated the effectiveness of alpelisib in preventing vascular malformations' occurrence, improving the already established ones, and prolonging survival. Considering these findings, we were authorized to treat 25 patients with alpelisib, including 7 children displaying PIK3CA (n = 16) or TEK (n = 9)-related capillary venous malformations resistant to usual therapies including sirolimus, debulking surgical procedures or percutaneous sclerotherapies. We assessed the volume of vascular malformations using magnetic resonance imaging (MRI) for each patient. Alpelisib demonstrated improvement in all 25 patients. Vascular malformations previously considered intractable were reduced and clinical symptoms were attenuated. MRI showed a decrease of 33.4% and 27.8% in the median volume of PIK3CA and TEK malformations respectively, over 6 months on alpelisib. In conclusion, this study supports PI3Kα inhibition as a promising therapeutic strategy in patients with PIK3CA or TEK-related capillary venous malformations.


Asunto(s)
Capilares , Fosfatidilinositol 3-Quinasa Clase I , Malformaciones Vasculares , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Animales , Ratones , Humanos , Malformaciones Vasculares/genética , Malformaciones Vasculares/tratamiento farmacológico , Malformaciones Vasculares/patología , Capilares/efectos de los fármacos , Capilares/patología , Femenino , Masculino , Sirolimus/farmacología , Sirolimus/uso terapéutico , Niño , Modelos Animales de Enfermedad , Terapia Molecular Dirigida , Tiazoles
10.
Haematologica ; 98(11): 1711-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23831922

RESUMEN

CALM-AF10 (also known as PICALM-MLLT10) is the commonest fusion protein in T-cell acute lymphoblastic leukemia, but its prognostic impact remains unclear. Molecular screening at diagnosis identified CALM-AF10 in 30/431 (7%) patients with T-cell acute lymphoblastic leukemia aged 16 years and over and in 15/234 (6%) of those aged up to 15 years. Adult CALM-AF10-positive patients were predominantly (72%) negative for surface (s)CD3/T-cell receptor, whereas children were predominantly (67%) positive for T-cell receptor. Among 22 adult CALM-AF10-positive patients treated according to the LALA94/GRAALL03-05 protocols, the poor prognosis for event-free survival (P=0.0017) and overall survival (P=0.0014) was restricted to the 15 T-cell receptor-negative cases. Among CALM-AF10-positive, T-cell receptor-negative patients, 82% had an early T-cell precursor phenotype, reported to be of poor prognosis in pediatric T-cell acute lymphoblastic leukemia. Early T-cell precursor acute lymphoblastic leukemia corresponded to 22% of adult LALA94/GRAALL03-05 T-cell acute lymphoblastic leukemias, but had no prognostic impact per se. CALM-AF10 fusion within early T-cell precursor acute lymphoblastic leukemia (21%) did, however, identify a group with a poor prognosis with regards to event-free survival (P=0.04). CALM-AF10 therefore identifies a poor prognostic group within sCD3/T-cell receptor negative adult T-cell acute lymphoblastic leukemias and is over-represented within early T-cell precursor acute lymphoblastic leukemias, in which it identifies patients in whom treatment is likely to fail. Its prognosis and overlap with early T-cell precursor acute lymphoblastic leukemia in pediatric T-cell acute lymphoblastic leukemia merits analysis. The clinical trial GRAALL was registered at Clinical Trials.gov number NCT00327678.


Asunto(s)
Proteínas de Ensamble de Clatrina Monoméricas/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Factores de Transcripción/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Pronóstico , Adulto Joven
11.
Exp Hematol Oncol ; 12(1): 46, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37189165

RESUMEN

BACKGROUND: Clear-cell renal cell carcinomas (ccRCCs) are malignant tumors with high metastatic potential and resistance to treatments occurs almost constantly. Compared to primary tumors, there are still limited genomic data that has been obtained from metastatic samples. METHODS: We aimed to characterize metastatic ccRCC by way of whole-genome analyses of metastatic formalin-fixed samples, using OncoScan® technology. We identified a frequent, unexpected pL1575P NOTCH1 mutation which we set out to characterize for translational purposes. We thus implemented patient-derived xenografts from metastatic samples of human ccRCC to explore its clinical significance. RESULTS: We showed that pL1575P NOTCH1 mutation was an activating mutation, leading to the expression of NOTCH1-intracellular domain-active fragments in both cancer cells and tumor endothelial cells, suggesting a trans-differentiation of cancer cells into tumor micro-vessels. We demonstrated that this mutation could be used as a predictive biomarker of response to CB-103, a specific NOTCH1-intracellular domain inhibitor. One striking result was the considerable anti-angiogenic effect, coherent with the presence of NOTCH1 mutation in tumor micro-vessels. CONCLUSIONS: We identified a frequent, unexpected pL1575P_c4724T_C NOTCH1 mutation as a new biomarker for ccRCC metastases, predictive of response to the CB103 NOTCH1-intracellular domain inhibitor.

12.
J Exp Med ; 220(11)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37712948

RESUMEN

Hemifacial myohyperplasia (HFMH) is a rare cause of facial asymmetry exclusively involving facial muscles. The underlying cause and the mechanism of disease progression are unknown. Here, we identified a somatic gain-of-function mutation of PIK3CA in five pediatric patients with HFMH. To understand the physiopathology of muscle hypertrophy in this context, we created a mouse model carrying specifically a PIK3CA mutation in skeletal muscles. PIK3CA gain-of-function mutation led to striated muscle cell hypertrophy, mitochondria dysfunction, and hypoglycemia with low circulating insulin levels. Alpelisib treatment, an approved PIK3CA inhibitor, was able to prevent and reduce muscle hypertrophy in the mouse model with correction of endocrine anomalies. Based on these findings, we treated the five HFMH patients. All patients demonstrated clinical, esthetical, and radiological improvement with proof of target engagement. In conclusion, we show that HFMH is due to somatic alteration of PIK3CA and is accessible to pharmacological intervention.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I , Asimetría Facial , Mutación con Ganancia de Función , Animales , Ratones , Fosfatidilinositol 3-Quinasa Clase I/genética , Modelos Animales de Enfermedad , Hipertrofia , Humanos , Niño
13.
Methods Mol Biol ; 2453: 43-59, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35622319

RESUMEN

Within the EuroClonality-NGS group, immune repertoire analysis for target identification in lymphoid malignancies was initially developed using two-stage amplicon approaches, essentially as a progressive modification of preceding methods developed for Sanger sequencing. This approach has, however, limitations with respect to sample handling, adaptation to automation, and risk of contamination by amplicon products. We therefore developed one-step PCR amplicon methods with individual barcoding for batched analysis for IGH, IGK, TRD, TRG, and TRB rearrangements, followed by Vidjil-based data analysis.


Asunto(s)
Genes Codificadores de los Receptores de Linfocitos T , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunoglobulinas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Recombinación Genética , Genes Codificadores de los Receptores de Linfocitos T/genética , Genes Codificadores de los Receptores de Linfocitos T/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Inmunoglobulinas/genética , Inmunoglobulinas/inmunología , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Recombinación Genética/genética , Recombinación Genética/inmunología
14.
Sci Adv ; 8(49): eade7823, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36490341

RESUMEN

PIK3CA-related overgrowth syndrome (PROS) is a genetic disorder caused by somatic mosaic gain-of-function mutations of PIK3CA. Clinical presentation of patients is diverse and associated with endocrine disruption. Adipose tissue is frequently involved, but its role in disease development and progression has not been elucidated. Here, we created a mouse model of PIK3CA-related adipose tissue overgrowth that recapitulates patient phenotype. We demonstrate that PIK3CA mutation leads to GLUT4 membrane accumulation with a negative feedback loop on insulin secretion, a burst of liver IGFBP1 synthesis with IGF-1 sequestration, and low circulating levels. Mouse phenotype was mainly driven through AKT2. We also observed that PIK3CA mutation induces metabolic reprogramming with Warburg-like effect and protein and lipid synthesis, hallmarks of cancer cells, in vitro, in vivo, and in patients. We lastly show that alpelisib is efficient at preventing and improving PIK3CA-adipose tissue overgrowth and reversing metabolomic anomalies in both animal models and patients.


Asunto(s)
Tejido Adiposo , Fosfatidilinositol 3-Quinasa Clase I , Mutación con Ganancia de Función , Animales , Ratones , Tejido Adiposo/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Mutación con Ganancia de Función/genética , Mutación , Fenotipo
15.
Haematologica ; 96(5): 664-71, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21330326

RESUMEN

BACKGROUND: Molecular monitoring of chronic myeloid leukemia patients treated with tyrosine kinase inhibitors is essential for therapeutic stratification. Inter-laboratory reproducibility is, therefore, a crucial issue which requires standardization and strict alignment of BCR-ABL1 values to the international scale. An automated cartridge-based assay (Xpert BCR-ABL Monitor(™), Cepheid) had been proposed as a robust alternative to non-automated assays. This study aimed to compare inter-laboratory reproducibility of automated and non-automated quantification, the possibility of converting automated results to the international scale, and the potential economic impact of automation. DESIGN AND METHODS: One hundred and eighteen blood samples from chronic myeloid leukemia patients treated with tyrosine kinase inhibitors were prospectively analyzed in two laboratories using both automated and non-automated assays. The economic evaluation involved a micro-costing study and average costs were assessed as a function of sample throughput. RESULTS: Automated assays achieved similar inter-laboratory reproducibility to highly standardized non-automated assays and a short delay (≤6 h) between sampling and blood lysis had a positive impact on inter-laboratory reproducibility. Reporting automated BCR-ABL1 ratios on the international scale was possible using a specific conversion factor which may vary with batches. Cost assessment showed that automated assays could be relevant for annual activity levels below 300 since average costs were lower than those of the non-automated assays. CONCLUSIONS: The Xpert BCR-ABL Monitor(™) assay could be appropriately used in a near-patient setting for routine quantification of e13/e14-a2 transcripts, preferably in partnership with a regional reference laboratory. However, its prognostic impact relative to non-automated quantification remains to be tested prospectively within appropriate clinical trials.


Asunto(s)
Técnicas de Laboratorio Clínico/normas , Proteínas de Fusión bcr-abl/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , ARN Mensajero/metabolismo , Técnicas de Laboratorio Clínico/economía , Técnicas de Laboratorio Clínico/métodos , Costos y Análisis de Costo , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/diagnóstico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Estudios Prospectivos , Inhibidores de Proteínas Quinasas/uso terapéutico , ARN Mensajero/genética , Estándares de Referencia , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sensibilidad y Especificidad
16.
Leukemia ; 35(3): 724-736, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32655144

RESUMEN

Classification of acute lymphoblastic and myeloid leukemias (ALL and AML) remains heavily based on phenotypic resemblance to normal hematopoietic precursors. This framework can provide diagnostic challenges for immunophenotypically heterogeneous immature leukemias, and ignores recent advances in understanding of developmental multipotency of diverse normal hematopoietic progenitor populations that are identified by transcriptional signatures. We performed transcriptional analyses of a large series of acute myeloid and lymphoid leukemias and detected significant overlap in gene expression between cases in different diagnostic categories. Bioinformatic classification of leukemias along a continuum of hematopoietic differentiation identified leukemias at the myeloid/T-lymphoid interface, which shared gene expression programs with a series of multi or oligopotent hematopoietic progenitor populations, including the most immature CD34+CD1a-CD7- subset of early thymic precursors. Within these interface acute leukemias (IALs), transcriptional resemblance to early lymphoid progenitor populations and biphenotypic leukemias was more evident in cases originally diagnosed as AML, rather than T-ALL. Further prognostic analyses revealed that expression of IAL transcriptional programs significantly correlated with poor outcome in independent AML patient cohorts. Our results suggest that traditional binary approaches to acute leukemia categorization are reductive, and that identification of IALs could allow better treatment allocation and evaluation of therapeutic options.


Asunto(s)
Biomarcadores de Tumor/genética , Diferenciación Celular , Leucemia Bifenotípica Aguda/mortalidad , Leucemia Mieloide Aguda/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Transcriptoma , Biología Computacional , Humanos , Leucemia Bifenotípica Aguda/genética , Leucemia Bifenotípica Aguda/patología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Pronóstico , Tasa de Supervivencia
17.
Sci Transl Med ; 13(614): eabg0809, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34613809

RESUMEN

Lymphatic cystic malformations are rare genetic disorders mainly due to somatic gain-of-function mutations in the PIK3CA gene. These anomalies are frequently associated with pain, inflammatory flares, esthetic deformities, and, in severe forms, life-threatening conditions. There is no approved medical therapy for patients with lymphatic malformations. In this proof-of-concept study, we developed a genetic mouse model of PIK3CA-related lymphatic malformations that recapitulates human disease. Using this model, we demonstrated the efficacy of alpelisib, an approved pharmacological inhibitor of PIK3CA in oncology, in preventing lymphatic malformation occurrence, improving lymphatic anomalies, and extending survival. On the basis of these results, we treated six patients with alpelisib, including three children, displaying severe PIK3CA-related lymphatic malformations. Patients were already unsuccessfully treated with rapamycin, percutaneous sclerotherapies, and debulking surgical procedures. We assessed the volume of lymphatic malformations using magnetic resonance imaging (MRI) for each patient. Alpelisib administration was associated with improvements in the six patients. Previously intractable vascular malformations shrank, and pain and inflammatory flares were attenuated. MRI showed a decrease of 48% in the median volume of lymphatic malformations over 6 months on alpelisib. During the study, two patients developed adverse events potentially related to alpelisib, including grade 1 mucositis and diarrhea. In conclusion, this study supports PIK3CA inhibition as a promising therapeutic strategy in patients with PIK3CA-related lymphatic anomalies.


Asunto(s)
Tiazoles , Animales , Humanos , Ratones
18.
Blood Adv ; 5(16): 3188-3198, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34424321

RESUMEN

Current diagnostic standards for lymphoproliferative disorders include multiple tests for detection of clonal immunoglobulin (IG) and/or T-cell receptor (TCR) rearrangements, translocations, copy-number alterations (CNAs), and somatic mutations. The EuroClonality-NGS DNA Capture (EuroClonality-NDC) assay was designed as an integrated tool to characterize these alterations by capturing IGH switch regions along with variable, diversity, and joining genes of all IG and TCR loci in addition to clinically relevant genes for CNA and mutation analysis. Diagnostic performance against standard-of-care clinical testing was assessed in a cohort of 280 B- and T-cell malignancies from 10 European laboratories, including 88 formalin-fixed paraffin-embedded samples and 21 reactive lesions. DNA samples were subjected to the EuroClonality-NDC protocol in 7 EuroClonality-NGS laboratories and analyzed using a bespoke bioinformatic pipeline. The EuroClonality-NDC assay detected B-cell clonality in 191 (97%) of 197 B-cell malignancies and T-cell clonality in 71 (97%) of 73 T-cell malignancies. Limit of detection (LOD) for IG/TCR rearrangements was established at 5% using cell line blends. Chromosomal translocations were detected in 145 (95%) of 152 cases known to be positive. CNAs were validated for immunogenetic and oncogenetic regions, highlighting their novel role in confirming clonality in somatically hypermutated cases. Single-nucleotide variant LOD was determined as 4% allele frequency, and an orthogonal validation using 32 samples resulted in 98% concordance. The EuroClonality-NDC assay is a robust tool providing a single end-to-end workflow for simultaneous detection of B- and T-cell clonality, translocations, CNAs, and sequence variants.


Asunto(s)
Reordenamiento Génico , Trastornos Linfoproliferativos , ADN , Genómica , Humanos , Inmunoglobulinas , Trastornos Linfoproliferativos/diagnóstico , Trastornos Linfoproliferativos/genética
19.
J Clin Invest ; 130(12): 6395-6408, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33141118

RESUMEN

Anaplastic large cell lymphoma (ALCL) is a mature T cell neoplasm that often expresses the CD4+ T cell surface marker. It usually harbors the t(2;5) (p23;q35) translocation, leading to the ectopic expression of NPM-ALK, a chimeric tyrosine kinase. We demonstrated that in vitro transduction of normal human CD4+ T lymphocytes with NPM-ALK results in their immortalization and malignant transformation. The tumor cells displayed morphological and immunophenotypical characteristics of primary patient-derived anaplastic large cell lymphomas. Cell growth, proliferation, and survival were strictly dependent on NPM-ALK activity and include activation of the key factors STAT3 and DNMT1 and expression of CD30 (the hallmark of anaplastic large-cell lymphoma). Implantation of NPM-ALK-transformed CD4+ T lymphocytes into immunodeficient mice resulted in the formation of tumors indistinguishable from patients' anaplastic large cell lymphomas. Integration of "Omic" data revealed that NPM-ALK-transformed CD4+ T lymphocytes and primary NPM-ALK+ ALCL biopsies share similarities with early T cell precursors. Of note, these NPM-ALK+ lymphoma cells overexpress stem cell regulators (OCT4, SOX2, and NANOG) and HIF2A, which is known to affect hematopoietic precursor differentiation and NPM-ALK+ cell growth. Altogether, for the first time our findings suggest that NPM-ALK could restore progenitor-like features in mature CD30+ peripheral CD4+ T cells, in keeping with a thymic progenitor-like pattern.


Asunto(s)
Quinasa de Linfoma Anaplásico/biosíntesis , Linfocitos T CD4-Positivos/enzimología , Transformación Celular Neoplásica/metabolismo , Linfoma Anaplásico de Células Grandes/enzimología , Células Madre Neoplásicas/enzimología , Timo/enzimología , Quinasa de Linfoma Anaplásico/genética , Animales , Linfocitos T CD4-Positivos/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Femenino , Humanos , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/patología , Timo/patología
20.
Hemasphere ; 4(2): e347, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32309784

RESUMEN

Minimal residual disease (MRD) has been increasingly investigated in mantle cell lymphoma (MCL), including for individual therapeutic stratification and pre-emptive treatment in clinical trials. Although patient/allele specific real-time quantitative polymerase chain reaction (qPCR) of IGH or BCL1-IGH clonal markers is the gold-standard method, its reliance on a standard curve for relative quantification limits quantification of low-level positivity within the 1E-4 to 1E-5 range; over half of positive MRD samples after treatment fall below the quantitative range (BQR) of the standard curve. Droplet digital PCR (ddPCR), in contrast, allows absolute quantification, including for samples with no baseline determination of tumor infiltration by multicolor flow cytometry (MFC), avoiding the need for a reference standard curve. Using updated, optimized, ddPCR criteria we compared it with qPCR in 416 MRD samples (and with MFC in 63), with over-representation (61%) of BQR results by qPCR, from a total of 166 patients from four prospective MCL clinical trials. ddPCR, qPCR and MFC gave comparable results in MRD samples with at least 0.01% (1E-4) positivity. ddPCR was preferable to qPCR since it provided more robust quantification at positivity between 1E-4 and 1E-5. Amongst 240 BQR samples with duplicate or triplicate analysis, 39% were positive by ddPCR, 49% negative and only 12% remained positive below quantifiable ddPCR limits. The prognostic relevance of ddPCR is currently under assessment in the context of prospective trials within the European MCL Network.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA