Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 380(2219): 20210102, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35094559

RESUMEN

This is the second part of a two-part special issue of the Philosophical Transactions of the Royal Society A, which recognizes, and hopefully encourages, the growing convergence of interests amongst mathematicians and physicists to scale the turbulence edifice. This convergence is explained in more detail in the editorial which accompanies the first part (Bec et al. 2022 Phil. Trans. R. Soc. A 380, 20210101. (doi:10.1098/rsta.2021.0101)) and includes a tribute to our friend, collaborator and mentor Uriel Frisch, to whom these special issues are dedicated. Uriel, the principal architect of the Nice School of Turbulence, remains the finest example of this synthesis of mathematics and physics in tackling the outstanding problem of turbulence. This article is part of the theme issue 'Scaling the turbulence edifice (part 2)'.

2.
Philos Trans A Math Phys Eng Sci ; 380(2218): 20210101, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35034492

RESUMEN

Turbulence is unique in its appeal across physics, mathematics and engineering. And yet a microscopic theory, starting from the basic equations of hydrodynamics, still eludes us. In the last decade or so, new directions at the interface of physics and mathematics have emerged, which strengthens the hope of 'solving' one of the oldest problems in the natural sciences. This two-part theme issue unites these new directions on a common platform emphasizing the underlying complementarity of the physicists' and the mathematicians' approaches to a remarkably challenging problem. This article is part of the theme issue 'Scaling the turbulence edifice (part 1)'.

3.
Soft Matter ; 17(9): 2421-2428, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33491720

RESUMEN

A polymer in a turbulent flow undergoes the coil-stretch transition when the Weissenberg number, i.e. the product of the Lyapunov exponent of the flow and the relaxation time of the polymer, surpasses a critical value. The effect of internal friction on the transition is studied by means of Brownian dynamics simulations of the elastic dumbbell model in a homogeneous and isotropic, incompressible, turbulent flow and analytical calculations for a stochastic velocity gradient. The results are explained by adapting the large deviations theory of Balkovsky et al. [Phys. Rev. Lett., 2000, 84, 4765] to an elastic dumbbell with internal viscosity. In turbulent flows, a distinctive feature of the probability distribution of polymer extensions is its power-law behaviour for extensions greater than the equilibrium length and smaller than the contour length. It is shown that although internal friction does not modify the critical Weissenberg number for the coil-stretch transition, it makes the slope of the probability distribution of the extension steeper, thus rendering the transition sharper. Internal friction therefore provides a possible explanation for the steepness of the distribution of polymer extensions observed in experiments at large Weissenberg numbers.

4.
Philos Trans A Math Phys Eng Sci ; 378(2175): 20190405, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32564716

RESUMEN

We show and explain how a long bead-spring chain, immersed in a homogeneous isotropic turbulent flow, preferentially samples vortical flow structures. We begin with an elastic, extensible chain which is stretched out by the flow, up to inertial-range scales. This filamentary object, which is known to preferentially sample the circular coherent vortices of two-dimensional (2D) turbulence, is shown here to also preferentially sample the intense, tubular, vortex filaments of three-dimensional (3D) turbulence. In the 2D case, the chain collapses into a tracer inside vortices. In the 3D case on the contrary, the chain is extended even in vortical regions, which suggests that the chain follows axially stretched tubular vortices by aligning with their axes. This physical picture is confirmed by examining the relative sampling behaviour of the individual beads, and by additional studies on an inextensible chain with adjustable bending-stiffness. A highly flexible, inextensible chain also shows preferential sampling in three dimensions, provided it is longer than the dissipation scale, but not much longer than the vortex tubes. This is true also for 2D turbulence, where a long inextensible chain can occupy vortices by coiling into them. When the chain is made inflexible, however, coiling is prevented and the extent of preferential sampling in two dimensions is considerably reduced. In three dimensions, on the contrary, bending stiffness has no effect, because the chain does not need to coil in order to thread a vortex tube and align with its axis. This article is part of the theme issue 'Fluid dynamics, soft matter and complex systems: recent results and new methods'.

5.
Phys Rev Lett ; 121(24): 244501, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30608752

RESUMEN

A string of tracers interacting elastically in a turbulent flow is shown to have a dramatically different behavior when compared to the noninteracting case. In particular, such an elastic chain shows strong preferential sampling of the turbulent flow unlike the usual tracer limit: An elastic chain is trapped in the vortical regions. The degree of preferential sampling and its dependence on the elasticity of the chain is quantified via the Okubo-Weiss parameter. The effect of modifying the deformability of the chain via the number of links that form it is also examined.

6.
Eur Phys J E Soft Matter ; 41(7): 84, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29987441

RESUMEN

We study the mixing of a passive scalar field dispersed in a solution of rodlike polymers in two dimensions, by means of numerical simulations of a rheological model for the polymer solution. The flow is driven by a parallel sinusoidal force (Kolmogorov flow). Although the Reynolds number is lower than the critical value for inertial instabilities, the rotational dynamics of the polymers generates a chaotic flow similar to the so-called elastic-turbulence regime observed in extensible polymer solutions. The temporal decay of the variance of the scalar field and its gradients shows that this chaotic flow strongly enhances mixing.

7.
Phys Rev Lett ; 104(18): 184506, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20482182

RESUMEN

We investigate the behavior of turbulent systems in geometries with one compactified dimension. A novel phenomenological scenario dominated by the splitting of the turbulent cascade emerges both from the theoretical analysis of passive scalar turbulence and from direct numerical simulations of Navier-Stokes turbulence.

8.
Phys Rev E ; 101(5-1): 053105, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32575226

RESUMEN

The interplay of inertia and elasticity is shown to have a significant impact on the transport of filamentary objects, modeled by bead-spring chains, in a two-dimensional turbulent flow. We show how elastic interactions among inertial beads result in a nontrivial sampling of the flow, ranging from entrapment within vortices to preferential sampling of straining regions. This behavior is quantified as a function of inertia and elasticity and is shown to be very different from free, noninteracting heavy particles, as well as inertialess chains [Picardo et al., Phys. Rev. Lett. 121, 244501 (2018)PRLTAO0031-900710.1103/PhysRevLett.121.244501]. In addition, by considering two limiting cases, of a heavy-headed and a uniformly inertial chain, we illustrate the critical role played by the mass distribution of such extended objects in their turbulent transport.

9.
Proc Math Phys Eng Sci ; 475(2223): 20180591, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31007546

RESUMEN

We consider the kinematic fluctuation dynamo problem in a flow that is random, white-in-time, with both solenoidal and potential components. This model is a generalization of the well-studied Kazantsev model. If both the solenoidal and potential parts have the same scaling exponent, then, as the compressibility of the flow increases, the growth rate decreases but remains positive. If the scaling exponents for the solenoidal and potential parts differ, in particular if they correspond to typical Kolmogorov and Burgers values, we again find that an increase in compressibility slows down the growth rate but does not turn it off. The slow down is, however, weaker and the critical magnetic Reynolds number is lower than when both the solenoidal and potential components display the Kolmogorov scaling. Intriguingly, we find that there exist cases, when the potential part is smoother than the solenoidal part, for which an increase in compressibility increases the growth rate. We also find that the critical value of the scaling exponent above which a dynamo is seen is unity irrespective of the compressibility. Finally, we realize that the dimension d = 3 is special, as for all other values of d the critical exponent is higher and depends on the compressibility.

10.
Phys Rev E ; 96(5-1): 053108, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29347655

RESUMEN

It is shown that the addition of small amounts of microscopic rods in a viscous fluid at low Reynolds number causes a significant increase of the flow resistance. Numerical simulations of the dynamics of the solution reveal that this phenomenon is associated to a transition from laminar to chaotic flow. Polymer stresses give rise to flow instabilities which, in turn, perturb the alignment of the rods. This coupled dynamics results in the activation of a wide range of scales, which enhances the mixing efficiency of viscous flows.

11.
Phys Rev E ; 93(5): 052605, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27300949

RESUMEN

We study the deformation of flexible polymers whose contour length lies in the inertial range of a homogeneous and isotropic turbulent flow. By using the elastic dumbbell model and a stochastic velocity field with nonsmooth spatial correlations, we obtain the probability density function of the extension as a function of the Weissenberg number and of the scaling exponent of the velocity structure functions. In a spatially rough flow, as in the inertial range of turbulence, the statistics of polymer stretching differs from that observed in laminar flows or in smooth chaotic flows. In particular, the probability distribution of polymer extensions decays as a stretched exponential, and the most probable extension grows as a power law of the Weissenberg number. Furthermore, the ability of the flow to stretch polymers weakens as the flow becomes rougher in space.

12.
Phys Rev E ; 94(2-1): 020501, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27627227

RESUMEN

Bead-rod-spring models are the foundation of the kinetic theory of polymer solutions. We derive the diffusion equation for the probability density function of the configuration of a general bead-rod-spring model in short-correlated Gaussian random flows. Under isotropic conditions, we solve this equation analytically for the elastic rhombus model introduced by Curtiss, Bird, and Hassager [Adv. Chem. Phys. 35, 31 (1976)].

13.
Artículo en Inglés | MEDLINE | ID: mdl-26651776

RESUMEN

We study the impact of the Peterlin approximation on the statistics of the end-to-end separation of polymers in a turbulent flow. The finitely extensible nonlinear elastic (FENE) model and the FENE model with the Peterlin approximation (FENE-P) are numerically integrated along a large number of Lagrangian trajectories resulting from a direct numerical simulation of three-dimensional homogeneous isotropic turbulence. Although the FENE-P model yields results in qualitative agreement with those of the FENE model, quantitative differences emerge. The steady-state probability of large extensions is overestimated by the FENE-P model. The alignment of polymers with the eigenvectors of the rate-of-strain tensor and with the direction of vorticity is weaker when the Peterlin approximation is used. At large Weissenberg numbers, the correlation times of both the extension and of the orientation of polymers are underestimated by the FENE-P model.

14.
Artículo en Inglés | MEDLINE | ID: mdl-25353409

RESUMEN

We study the statistical properties of orientation and rotation dynamics of elliptical tracer particles in two-dimensional, homogeneous, and isotropic turbulence by direct numerical simulations. We consider both the cases in which the turbulent flow is generated by forcing at large and intermediate length scales. We show that the two cases are qualitatively different. For large-scale forcing, the spatial distribution of particle orientations forms large-scale structures, which are absent for intermediate-scale forcing. The alignment with the local directions of the flow is much weaker in the latter case than in the former. For intermediate-scale forcing, the statistics of rotation rates depends weakly on the Reynolds number and on the aspect ratio of particles. In contrast with what is observed in three-dimensional turbulence, in two dimensions the mean-square rotation rate increases as the aspect ratio increases.

15.
Phys Rev Lett ; 98(2): 024503, 2007 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-17358612

RESUMEN

We present a new closure for the mean rate of stretching of a dissolved polymer by homogeneous isotropic turbulence. The polymer is modeled by a bead-spring-type model (e.g., Oldroyd B, FENE-P, Giesekus) and the analytical closure is obtained assuming the Lagrangian velocity gradient can be modeled as a Gaussian, white-noise stochastic process. The resulting closure for the mean stretching depends upon the ratio of the correlation time for strain and rotation. Additionally, we derived a second-order expression for circumstances when strain and rotation have a finite correlation time. Finally, the base level closure is shown to reproduce results from direct numerical simulations by simply modifying the coefficients.

16.
Phys Rev Lett ; 99(20): 204501, 2007 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-18233145

RESUMEN

We present measurements of fluid particle accelerations in turbulent water flow between counterrotating disks using three-dimensional Lagrangian particle tracking. By simultaneously following multiple particles with sub-Kolmogorov-time-scale temporal resolution, we measured the spatial correlation of fluid particle acceleration at Taylor microscale Reynolds numbers between 200 and 690. We also obtained indirect, nonintrusive measurements of the Eulerian pressure structure functions by integrating the acceleration correlations. Our measurements are in good agreement with the theoretical predictions of the acceleration correlations and the pressure structure function in isotropic high-Reynolds number turbulence by Obukhov and Yaglom in 1951 [Prikl. Mat. Mekh. 15, 3 (1951)]. The measured pressure structure functions display K41 scaling in the inertial range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA