Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Langmuir ; 38(1): 92-99, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-34939810

RESUMEN

In this paper, we consider drops that are subjected to a gradually increasing lateral force and follow the stages of the motion of the drops. We show that the first time a drop slides as a whole is when the receding edge of the drop is pulled by the advancing edge (the advancing edge drags the receding edge). The generality of this phenomenon includes sessile and pendant drops and spans over various chemically and topographically different cases. Because this observation is true for both pendant and sessile cases, we exclude hydrostatic pressure as its reason. Instead, we explain it in terms of the wetting adaptation and interfacial modulus, that is, the difference in the energies of the solid interface at the advancing and receding edges. At the receding edge, a slight motion exposes to the air a recently wetted solid surface whose molecules had reoriented to the liquid and will take time to reorient back to the air. This results in a high surface energy at the solid-air interface which pulls on the triple line, that is, inhibits the motion of the receding edge. On the other hand, at the advancing edge, a slight advancement does not change the nature of the solid interfacial molecules outside the drop, and the advancing side's sliding can continue. Moreover, the solid molecules under the drop at the advancing edge take time to reorient, and hence, their configuration is not yet adapted for the liquid and therefore not adapted for retention of the advancing edge. Therefore, in sliding-drop experiments, the advancing edge moves before the receding one, typically a few times before the receding edge moves. For the same reason, the last motion of the receding edge usually happens as a result of the advancing edge pulling on it.

2.
Gels ; 9(7)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37504435

RESUMEN

Mucus is a critical part of the human body's immune system that traps and carries away various particulates such as anthropogenic pollutants, pollen, viruses, etc. Various synthetic hydrogels have been developed to mimic mucus, using different polymers as their backbones. Common to these simulants is a three-dimensional gel network that is physically crosslinked and is capable of loosely entrapping water within. Two of the challenges in mimicking mucus using synthetic hydrogels include the need to mimic the rheological properties of the mucus and its ability to capture particulates (its adhesion mechanism). In this paper, we review the existing mucus simulants and discuss their rheological, adhesive, and tribological properties. We show that most, but not all, simulants indeed mimic the rheological properties of the mucus; like mucus, most hydrogel mucus simulants reviewed here demonstrated a higher storage modulus than its loss modulus, and their values are in the range of that found in mucus. However, only one mimics the adhesive properties of the mucus (which are critical for the ability of mucus to capture particulates), Polyvinyl alcohol-Borax hydrogel.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA