Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
J Cardiovasc Magn Reson ; 21(1): 56, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31484544

RESUMEN

BACKGROUND: In-vivo cardiovascular magnetic resonance (CMR) diffusion tensor imaging (DTI) allows imaging of alterations of cardiac fiber architecture in diseased hearts. Cardiac amyloidosis (CA) causes myocardial infiltration of misfolded proteins with unknown consequences for myocardial microstructure. This study applied CMR DTI in CA to assess microstructural alterations and their consequences for myocardial function compared to healthy controls. METHODS: Ten patients with CA (8 AL, 2 ATTR) and ten healthy controls were studied using a diffusion-weighed second-order motion-compensated spin-echo sequence at 1.5 T. Additionally, left ventricular morphology, ejection fraction, strain and native T1 values were obtained in all subjects. In CA patients, T1 mapping was repeated after the administration of gadolinium for extracellular volume fraction (ECV) calculation. CMR DTI analysis was performed to yield the scalar diffusion metrics mean diffusivity (MD) and fractional anisotropy (FA) as well as the characteristics of myofiber orientation including helix, transverse and E2A sheet angle (HA, TA, E2A). RESULTS: MD and FA were found to be significantly different between CA patients and healthy controls (MD 1.77 ± 0.17 10- 3 vs 1.41 ± 0.07 10- 3 mm2/s, p <  0.001; FA 0.25 ± 0.04 vs 0.35 ± 0.03, p <  0.001). MD demonstrated an excellent correlation with native T1 (r = 0.908, p <  0.001) while FA showed a significant correlation with ECV in the CA population (r = - 0.851, p <  0.002). HA exhibited a more circumferential orientation of myofibers in CA patients, in conjunction with a higher TA standard deviation and a higher absolute E2A sheet angle. The transmural HA slope was found to be strongly correlated with the global longitudinal strain (r = 0.921, p < 0.001). CONCLUSION: CMR DTI reveals significant alterations of scalar diffusion metrics in CA patients versus healthy controls. Elevated MD and lower FA values indicate myocardial disarray with higher diffusion in CA that correlates well with native T1 and ECV measures. In CA patients, CMR DTI showed pronounced circumferential orientation of the myofibers, which may provide the rationale for the reduction of global longitudinal strain that occurs in amyloidosis patients. Accordingly, CMR DTI captures specific features of amyloid infiltration, which provides a deeper understanding of the microstructural consequences of CA.


Asunto(s)
Amiloidosis/diagnóstico por imagen , Cardiomiopatías/diagnóstico por imagen , Imagen de Difusión Tensora , Imagen por Resonancia Cinemagnética , Anciano , Amiloidosis/patología , Amiloidosis/fisiopatología , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Estudios de Casos y Controles , Medios de Contraste/administración & dosificación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Miocardio/patología , Compuestos Organometálicos/administración & dosificación , Valor Predictivo de las Pruebas , Estudios Prospectivos , Volumen Sistólico , Función Ventricular Izquierda
2.
Eur J Hum Genet ; 31(8): 953-961, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36550190

RESUMEN

Next generation sequencing (NGS) can detect carrier status for rare recessive disorders, informing couples about their reproductive risk. The recent ACMG recommendations support offering NGS-based carrier screening (NGS-CS) in an ethnic and population-neutral manner for all genes that have a carrier frequency >1/200 (based on GnomAD). To evaluate current challenges for NGS-CS, we focused on the ciliopathies, a well-studied group of rare recessive disorders. We analyzed 118 ciliopathy genes by whole exome sequencing in ~400 healthy local individuals and ~1000 individuals from the UK1958-birth cohort. We found 20% of healthy individuals (1% of couples) to be carriers of reportable variants in a ciliopathy gene, while 50% (4% of couples) carry variants of uncertain significance (VUS). This large proportion of VUS is partly explained by the limited utility of the ACMG/AMP variant-interpretation criteria in healthy individuals, where phenotypic match or segregation criteria cannot be used. Most missense variants are thus classified as VUS and not reported, which reduces the negative predictive value of the screening test. We show how gene-specific variation patterns and structural protein information can help prioritize variants most likely to be disease-causing, for (future) functional assays. Even when considering only strictly pathogenic variants, the observed carrier frequency is substantially higher than expected based on estimated disease prevalence, challenging the 1/200 carrier frequency cut-off proposed for choice of genes to screen. Given the challenges linked to variant interpretation in healthy individuals and the uncertainties about true carrier frequencies, genetic counseling must clearly disclose these limitations of NGS-CS.


Asunto(s)
Ciliopatías , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Asesoramiento Genético , Secuenciación del Exoma , Ciliopatías/diagnóstico , Ciliopatías/genética , Tamización de Portadores Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA