Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Haematologica ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899342

RESUMEN

Hematological cancers are among the most common cancers in adults and children. Despite significant improvements in therapies, many patients still succumb to the disease. Therefore, novel therapies are needed. The Wiskott-Aldrich syndrome protein (WASp) family regulates actin assembly in conjunction with the Arp2/3 complex, a ubiquitous nucleation factor. WASp is expressed exclusively in hematopoietic cells and exists in two allosteric conformations: autoinhibited or activated. Here, we describe the development of EG-011, a first-in-class small molecule activator of the WASp auto-inhibited form. EG-011 possesses in vitro and in vivo anti-tumor activity as a single agent in lymphoma, leukemia, and multiple myeloma, including models of secondary resistance to PI3K, BTK, and proteasome inhibitors. The in vitro activity was confirmed in a lymphoma xenograft. Actin polymerization and WASp binding was demonstrated using multiple techniques. Transcriptome analysis highlighted homology with drugs-inducing actin polymerization.

2.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38396911

RESUMEN

In the last few years, pulsed electric fields have emerged as promising clinical tools for tumor treatments. This study highlights the distinct impact of a specific pulsed electric field protocol, PEF-5 (0.3 MV/m, 40 µs, 5 pulses), on astrocytes (NHA) and medulloblastoma (D283) and glioblastoma (U87 NS) cancer stem-like cells (CSCs). We pursued this goal by performing ultrastructural analyses corroborated by molecular/omics approaches to understand the vulnerability or resistance mechanisms triggered by PEF-5 exposure in the different cell types. Electron microscopic analyses showed that, independently of exposed cells, the main targets of PEF-5 were the cell membrane and the cytoskeleton, causing membrane filopodium-like protrusion disappearance on the cell surface, here observed for the first time, accompanied by rapid cell swelling. PEF-5 induced different modifications in cell mitochondria. A complete mitochondrial dysfunction was demonstrated in D283, while a mild or negligible perturbation was observed in mitochondria of U87 NS cells and NHAs, respectively, not sufficient to impair their cell functions. Altogether, these results suggest the possibility of using PEF-based technology as a novel strategy to target selectively mitochondria of brain CSCs, preserving healthy cells.


Asunto(s)
Mitocondrias , Neoplasias , Mitocondrias/metabolismo , Membrana Celular/metabolismo , Electricidad , Citoesqueleto/metabolismo , Encéfalo/metabolismo , Neoplasias/metabolismo
3.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38338881

RESUMEN

The RNA-binding protein LIN28B, identified as an independent risk factor in high-risk neuroblastoma patients, is implicated in adverse treatment outcomes linked to metastasis and chemoresistance. Despite its clinical significance, the impact of LIN28B on neuroblastoma cell metabolism remains unexplored. This study employs a multi-omics approach, integrating transcriptome and metabolome data, to elucidate the global metabolic program associated with varying LIN28B expression levels over time. Our findings reveal that escalating LIN28B expression induces a significant metabolic rewiring in neuroblastoma cells. Specifically, LIN28B prompts a time-dependent increase in the release rate of metabolites related to the glutathione and aminoacyl-tRNA biosynthetic pathways, concomitant with a reduction in glucose uptake. These results underscore the pivotal role of LIN28B in governing neuroblastoma cell metabolism and suggest a potential disruption in the redox balance of LIN28B-bearing cells. This study offers valuable insights into the molecular mechanisms underlying LIN28B-associated adverse outcomes in neuroblastoma, paving the way for targeted therapeutic interventions.


Asunto(s)
MicroARNs , Neuroblastoma , Humanos , MicroARNs/genética , Multiómica , Neuroblastoma/metabolismo , Transcriptoma , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
4.
J Enzyme Inhib Med Chem ; 38(1): 2270180, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37850364

RESUMEN

A novel library of human carbonic anhydrase (hCA) inhibitors based on the 2-sulfanilamido[1,2,4]triazolo[1,5-a]pyrimidine skeleton modified at its 7-position was prepared by an efficient convergent procedure. These derivatives were evaluated in vitro for their inhibition properties against a representative panel of hCA isoforms (hCA I, II, IV, IX, and XII). The target tumour-associated isoforms hCA IX and XII were potently inhibited with KIs in the low nanomolar range of 5-96 nM and 4-72 nM, respectively. Compounds 1d, 1j, 1v, and 1x were the most potent hCA IX inhibitors with KIs of 5.1, 8.6, 4.7, and 5.1 nM, respectively. Along with derivatives 1d and 1j, compounds 1r and 1ab potently inhibited hCA XII isoform with KIs in a single-digit nanomolar range of 8.8, 5.4, 4.3, and 9.0 nM, respectively. Compounds 1e, 1m, and 1p exhibited the best selectivity against hCA IX and hCA XII isoforms over off-target hCA II, with selectivity indexes ranging from 5 to 14.


Asunto(s)
Antígenos de Neoplasias , Anhidrasa Carbónica II , Humanos , Anhidrasa Carbónica II/metabolismo , Relación Estructura-Actividad , Anhidrasa Carbónica IX/metabolismo , Anhidrasa Carbónica I/metabolismo , Isoformas de Proteínas , Sulfanilamidas , Inhibidores de Anhidrasa Carbónica/farmacología , Estructura Molecular
5.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35328420

RESUMEN

Glioblastoma multiforme (GBM) is the most common brain cancer in adults. GBM starts from a small fraction of poorly differentiated and aggressive cancer stem cells (CSCs) responsible for aberrant proliferation and invasion. Due to extreme tumor heterogeneity, actual therapies provide poor positive outcomes, and cancers usually recur. Therefore, alternative approaches, possibly targeting CSCs, are necessary against GBM. Among emerging therapies, high intensity ultra-short pulsed electric fields (PEFs) are considered extremely promising and our previous results demonstrated the ability of a specific electric pulse protocol to selectively affect medulloblastoma CSCs preserving normal cells. Here, we tested the same exposure protocol to investigate the response of U87 GBM cells and U87-derived neurospheres. By analyzing different in vitro biological endpoints and taking advantage of transcriptomic and bioinformatics analyses, we found that, independent of CSC content, PEF exposure affected cell proliferation and differentially regulated hypoxia, inflammation and P53/cell cycle checkpoints. PEF exposure also significantly reduced the ability to form new neurospheres and inhibited the invasion potential. Importantly, exclusively in U87 neurospheres, PEF exposure changed the expression of stem-ness/differentiation genes. Our results confirm this physical stimulus as a promising treatment to destabilize GBM, opening up the possibility of developing effective PEF-mediated therapies.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Glioblastoma , Adulto , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Neoplasias Cerebelosas/patología , Glioblastoma/metabolismo , Humanos , Recurrencia Local de Neoplasia/patología , Células Madre Neoplásicas/metabolismo
6.
J Cell Mol Med ; 25(18): 9060-9065, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34402163

RESUMEN

BCL2-associated athanogene-1 (BAG1) is a multi-functional protein that is found deregulated in several solid cancers and in paediatric acute myeloid leukaemia. The investigation of BAG1 isoforms expression and intracellular localization in B-cell acute lymphoblastic leukaemia (B-ALL) patient-derived specimens revealed that BAG1 levels decrease during disease remission, compared to diagnosis, but drastically increase at relapse. In particular, at diagnosis both BAG1-L and BAG1-M isoforms are mainly nuclear, while during remission the localization pattern changes, having BAG1-M almost exclusively in the cytosol indicating its potential cytoprotective role in B-ALL. In addition, knockdown of BAG1/BAG3 induces cell apoptosis and G1-phase cell cycle arrest and, more intriguingly, shapes cell response to chemotherapy. BAG1-depleted cells show an increased sensitivity to the common chemotherapeutic agents, dexamethasone or daunorubicin, and to the BCL2 inhibitor ABT-737. Moreover, the BAG1 inhibitor Thio-2 induces a cytotoxic effect on RS4;11 cells both in vitro and in a zebrafish xenograft model and strongly synergizes with pan-BCL inhibitors. Collectively, these data sustain BAG1 deregulation as a critical event in assuring survival advantage to B-ALL cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Factores de Transcripción/metabolismo , Antineoplásicos , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Cultivo Primario de Células , Células Tumorales Cultivadas
7.
Org Biomol Chem ; 19(4): 878-890, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33410854

RESUMEN

A series of ten 2,7- and 2,8-diarylquinolizinium derivatives was synthesized and their DNA-binding and cytotoxic properties were investigated. Except for one nitro-substituted derivative all tested diarylquinolizinium ions bind to DNA with sufficient affinity (2 × 104 M-1-2 × 105 M-1). It was shown with photometric, fluorimetric and polarimetric titrations as well as with flow-LD analysis that the ligands bind mainly by intercalation to duplex DNA, however, depending on the ligand-DNA ratio, groove binding and backbone association were also observed with some derivatives. The biological activity was further investigated with tests of cytotoxicity and antiproliferative properties towards non-tumor cells and selected cancer cells, along with cell cycle analysis and an annexin-V assay. Notably, substrates that carry donor-functionalities in the 4-position of the phenyl substituents revealed a strong, and in some cases selective, antiproliferative activity as quantified by the growth inhibition, GI50, at very low micromolar and even submicromolar level both in leukemia and solid tumors.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , ADN/metabolismo , Diseño de Fármacos , Quinolizinas/síntesis química , Quinolizinas/farmacología , Antineoplásicos/química , Antineoplásicos/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Técnicas de Química Sintética , ADN/química , Humanos , Ligandos , Modelos Moleculares , Conformación de Ácido Nucleico , Quinolizinas/química , Quinolizinas/metabolismo
8.
Bioorg Chem ; 112: 104919, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33957538

RESUMEN

Many clinically used agents active in cancer chemotherapy exert their activity through the induction of cell death (apoptosis) by targeting microtubules, altering protein function or inhibiting DNA synthesis. The benzo[b]thiophene scaffold holds a pivotal place as a pharmacophore for the development of anticancer agents, and, in addition, this scaffold has many pharmacological activities. We have developed a flexible method for the construction of a new series of 2-aryl-3-(3,4,5-trimethoxyanilino)-6-methoxybenzo[b]thiophenes as potent antiproliferative agents, giving access to a wide range of substitution patterns at the 2-position of the 6-methoxybenzo[b]thiophene common intermediate. In the present study, all the synthesized compounds retained the 3-(3,4,5-trimethoxyanilino)-6-methoxybenzo[b]thiophene moiety, and the structure-activity relationship was examined by modification of the aryl group at its 2-position with electron-withdrawing (F) or electron-releasing (alkyl and alkoxy) groups. We found that small substituents, such as fluorine or methyl, could be placed in the para-position of the 2-phenyl ring, and these modifications only slightly reduced antiproliferative activity relative to the unsubstituted 2-phenyl analogue. Compounds 3a and 3b, bearing the phenyl and para-fluorophenyl at the 2-position of the 6-methoxybenzo[b]thiophene nucleus, respectively, exhibited the greatest antiproliferative activity among the tested compounds. The treatment of both Caco2 (not metastatic) and HCT-116 (metastatic) colon carcinoma cells with 3a or 3b triggered a significant induction of apoptosis as demonstrated by the increased expression of cleaved-poly(ADP-ribose) polymerase (PARP), receptor-interacting protein (RIP) and caspase-3 proteins. The same effect was not observed with non-transformed colon 841 CoN cells. A potential additional effect during mitosis for 3a in metastatic cells and for 3b in non-metastatic cells was also observed.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Tiofenos/farmacología , Moduladores de Tubulina/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Modelos Moleculares , Estructura Molecular , Polimerizacion/efectos de los fármacos , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química
9.
J Nat Prod ; 83(8): 2434-2446, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32790992

RESUMEN

The expression of multidrug resistance P-glycoprotein (P-gp) by cancer cells represents one of the major drawbacks to successful cancer therapy. Accordingly, the development of drugs that inhibit the activity of this transporter remains a major challenge in cancer drug discovery. In this context, several new ecdysteroid derivatives have been synthesized and evaluated as P-gp inhibitors. Two of them (compounds 9 and 14) were able to resensitize CEMVbl100 and LoVoDoxo resistant cell lines to vinblastine and doxorubicin, respectively. Indeed, both compounds 9 and 14 increased the cellular accumulation of rhodamine 123 in cells expressing P-gp and stimulated basal P-glycoprotein-ATPase activity at a 1 µM concentration, demonstrating their interference with the transport of other substrates in a competitive mode. Moreover, in a medulloblastoma cell line (DAOY), compounds 9 and 14 reduced the side population representing cancer stem cells, which are characterized by a high expression of ABC drug transporters. Further, in DAOY cells, the same two compounds synergized with cisplatin and vincristine, two drugs used commonly in the therapy of medulloblastoma. Molecular docking studies on the homology-modeled structure of the human P-glycoprotein provided a rationale for the biological results, validating the binding mode within the receptor site, in accordance with lipophilicity data and observed structure-activity relationship information. Altogether, the present results endorse these derivatives as promising P-gp inhibitors, and they may serve as candidates to reverse drug resistance in cancer cells.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/fisiología , Resistencia a Antineoplásicos/efectos de los fármacos , Ecdisteroides/química , Ecdisteroides/farmacología , Transportadoras de Casetes de Unión a ATP/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos/fisiología , Humanos , Rodamina 123/metabolismo , Relación Estructura-Actividad
10.
Bioorg Chem ; 97: 103665, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32086053

RESUMEN

A new class of inhibitors of tubulin polymerization based on the 2-alkoxycarbonyl-3-(3',4',5'-trimethoxyanilino)indole molecular skeleton was synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization and cell cycle effects. The results presented show that the methoxy substitution and location on the indole nucleus plays an important role in inhibition of cell growth, and the most favorable position for the substituent was at C-6. In addition, a small-size ester function (methoxy/ethoxycarbonyl) at the 2-position of the indole core was desirable. Also, analogues that were alkylated with methyl, ethyl or n-propyl groups or had a benzyl moiety on the N-1 indolic nitrogen retained activity equivalent to those observed in the parent N-1H analogues. The most promising compounds of the series were 2-methoxycarbonyl-3-(3',4'.5'-trimethoxyanilino)-5-methoxyindole 3f and 1-methyl-2-methoxycarbonyl-3-(3',4'.5'-trimethoxyanilino)-6-methoxy-indole 3w, both of which target tubulin at the colchicine site with antitubulin activities comparable to that of the reference compound combretastatin A-4.


Asunto(s)
Indoles/química , Indoles/farmacología , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Indoles/síntesis química , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Moduladores de Tubulina/síntesis química
11.
Pediatr Blood Cancer ; 66(5): e27657, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30724025

RESUMEN

BACKGROUND: Sickle cell disease (SCD) is a chronic multisystem disorder requiring comprehensive care that includes newborn screening (NBS) as the first step of care. Italy still lacks a national SCD NBS program and policy on blood disorders. Pilot single-center screening programs and a regional targeted screening have been implemented so far, but more evidence is needed in order to impact health policies. POPULATION AND METHODS: NBS was offered to parents of newborns in gynecology clinics in Padova and Monza, tertiary care university hospitals in northern Italy. High-performance liquid chromatography (HPLC) was performed as the first test on samples collected on Guthrie cards. Molecular analysis of the beta-globin gene was performed on positive samples. RESULTS: A total of 5466 newborns were enrolled; for 5439, informed consents were obtained. A similar family origin was seen in the two centers (65% Italians, 9% mixed couples, 26% immigrants). Compared with SCD NBS programs in the United States and Europe, our results show a similar incidence of SCD patients and carriers. All SCD patients had a Sub-Saharan family background; HbS carriers were 15% Caucasians (Italian, Albanians) and 10% from other areas (North Africa-India-South America); carriers of other hemoglobin variants were mainly (47%) from other areas. CONCLUSIONS: Our results demonstrate the feasibility of a multicentric NBS program for SCD, give information on HbS epidemiology in two Northern Italian Areas, and support previous European recommendation for a universal NBS program for SCD in Italy: a high incidence of patients and carriers has been detected, with a high percentage of Caucasian carriers, impossible to identify in a targeted NBS.


Asunto(s)
Anemia de Células Falciformes/diagnóstico , Anemia de Células Falciformes/epidemiología , Enfermedades del Recién Nacido/diagnóstico , Enfermedades del Recién Nacido/epidemiología , Tamizaje Neonatal/métodos , Humanos , Incidencia , Recién Nacido , Italia/epidemiología , Pronóstico
12.
J Enzyme Inhib Med Chem ; 34(1): 1152-1157, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31179771

RESUMEN

Nine indole derivatives (9a-i) were tested as potential inhibitors of the Keap1-Nrf2 interaction. This class of compounds increases the intracellular levels of the transcription factor Nrf2 and the consequent expression of enzymes encoded by genes containing the antioxidant response element (ARE). In the ARE-luciferase reporter assay only 9e-g revealed to be remarkably more active than t-butylhydroxyquinone (t-BHQ), with 9g standing out as the best performing compound. While 9e and 9f are weak acids, 9g is an ampholyte prevailing as a zwitterion in neutral aqueous solutions. The ability of 9e-g to significantly increase levels of Nrf2, NADPH:quinone oxidoreductase 1, and transketolase (TKT) gave further support to the hypothesis that these compounds act as inhibitors of the Keap1-Nrf2 interaction. Docking simulations allowed us to elucidate the nature of the putative interactions between 9g and Keap1.


Asunto(s)
Indoles/química , Indoles/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Relación Dosis-Respuesta a Droga , Células HeLa , Humanos , Modelos Moleculares , Estructura Molecular , Unión Proteica/efectos de los fármacos , Relación Estructura-Actividad
13.
Br J Cancer ; 118(7): 985-994, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29515258

RESUMEN

BACKGROUND: Despite chemotherapy intensification, a subgroup of high-risk paediatric T-cell acute lymphoblastic leukemia (T-ALL) patients still experience treatment failure. In this context, we hypothesised that therapy resistance in T-ALL might involve aldo-keto reductase 1C (AKR1C) enzymes as previously reported for solid tumors. METHODS: Expression of NRF2-AKR1C signaling components has been analysed in paediatric T-ALL samples endowed with different treatment outcomes as well as in patient-derived xenografts of T-ALL. The effects of AKR1C enzyme modulation has been investigated in T-ALL cell lines and primary cultures by combining AKR1C inhibition, overexpression, and gene silencing approaches. RESULTS: We show that T-ALL cells overexpress AKR1C1-3 enzymes in therapy-resistant patients. We report that AKR1C1-3 enzymes play a role in the response to vincristine (VCR) treatment, also ex vivo in patient-derived xenografts. Moreover, we demonstrate that the modulation of AKR1C1-3 levels is sufficient to sensitise T-ALL cells to VCR. Finally, we show that T-ALL chemotherapeutics induce overactivation of AKR1C enzymes independent of therapy resistance, thus establishing a potential resistance loop during T-ALL combination treatment. CONCLUSIONS: Here, we demonstrate that expression and activity of AKR1C enzymes correlate with response to chemotherapeutics in T-ALL, posing AKR1C1-3 as potential targets for combination treatments during T-ALL therapy.


Asunto(s)
Aldo-Ceto Reductasas/fisiología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Resistencia a Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , 20-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 20-Hidroxiesteroide Deshidrogenasas/fisiología , Edad de Inicio , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/antagonistas & inhibidores , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/fisiología , Aldo-Ceto Reductasas/antagonistas & inhibidores , Animales , Niño , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Hidroxiesteroide Deshidrogenasas/fisiología , Isoenzimas/fisiología , Acetato de Medroxiprogesterona/administración & dosificación , Ratones , Ratones Endogámicos NOD , Ratones SCID , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/fisiología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/epidemiología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Células Tumorales Cultivadas , Vincristina/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
14.
J Nat Prod ; 81(10): 2212-2221, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30360625

RESUMEN

Fifteen new multifunctional conjugates were designed and synthesized by chemically linking the steroidal framework of natural occurring γ-oryzanol and γ-oryzanol-derived phytosterols to a wide range of bioactive natural compounds (fatty acids, phenolic acids, amino acids, lipoic acid, retinoic acid, curcumin, and resveratrol). Starting from γ-oryzanol, which is the main component of rice bran oil, this study was aimed at assessing if the conjugation strategy might enhance some γ-oryzanol bioactivities. The antioxidant activity was evaluated through three different mechanisms, namely, DPPH-scavenging activity, metal-chelating activity, and ß-carotene-bleaching inhibition. Measurement of the in vitro cell growth inhibitory effects on three different human cancer cellular lines was also carried out, and the potential hypocholesterolemic effect was studied. Compounds 10 and 15 displayed an improved antioxidant activity, with respect to that of γ-oryzanol. Compounds 2, 6, and 12 exerted an antiproliferative activity in the low micromolar range against HeLa and DAOY cells (GI50 < 10 µM). As for the claimed hypocholesterolemic effect of γ-oryzanol, none of the synthesized compounds inhibited the 3-hydroxy-3-methylglutaryl-coenzyme A reductase, a key enzyme in cholesterol biosynthesis.


Asunto(s)
Anticolesterolemiantes/síntesis química , Anticolesterolemiantes/farmacología , Antineoplásicos Fitogénicos/síntesis química , Antineoplásicos Fitogénicos/farmacología , Antioxidantes/síntesis química , Antioxidantes/farmacología , Fenilpropionatos/química , Fenilpropionatos/farmacología , Fitosteroles/química , Fitosteroles/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quelantes/química , Depuradores de Radicales Libres/síntesis química , Depuradores de Radicales Libres/farmacología , Humanos , Estructura Molecular , Oryza/química , Aceites de Plantas/química , beta Caroteno/química
15.
Bioorg Chem ; 80: 361-374, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29986184

RESUMEN

Many natural and synthetic substances are known to interfere with the dynamic assembly of tubulin, preventing the formation of microtubules. In our search for potent and selective antitumor agents, a novel series of 1-(3',4',5'-trimethoxybenzoyl)-5-amino-1,2,4-triazoles were synthesized. The compounds had different heterocycles, including thiophene, furan or the three isomeric pyridines, and they possessed a phenyl ring bearing electron-releasing or electron-withdrawing substituents at the 3-position of the 5-amino-1,2,4-triazole system. Most of the twenty-two tested compounds showed moderate to potent antiproliferative activities against a panel of solid tumor and leukemic cell lines, with four (5j, 5k, 5o and 5p) showing strong antiproliferative activity (IC50 < 1 µM) against selected cancer cells. Among them, several molecules preferentially inhibited the proliferation of leukemic cell lines, showing IC50 values 2-100-fold lower for Jurkat and RS4;11 cells than those for the three lines derived from solid tumors (HeLa, HT-29 and MCF-7 cells). Compound 5k strongly inhibited tubulin assembly, with an IC50 value of 0.66 µM, half that obtained in simultaneous experiments with CA-4 (IC50 = 1.3 µM).


Asunto(s)
Diseño de Fármacos , Triazoles/química , Moduladores de Tubulina/síntesis química , Tubulina (Proteína)/metabolismo , Apoptosis/efectos de los fármacos , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colchicina/química , Colchicina/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Simulación de Dinámica Molecular , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Termodinámica , Triazoles/metabolismo , Triazoles/farmacología , Tubulina (Proteína)/química , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/farmacología
16.
Carcinogenesis ; 38(10): 1011-1020, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28968651

RESUMEN

Neuroblastoma (NBL) accounts for >7% of malignancies in patients younger than 15 years. Low- and intermediate-risk patients exhibit excellent or good prognosis after treatment, whereas for high-risk (HR) patients, the estimated 5-year survival rates is still <40%. The ability to stratify HR patients that will not respond to standard treatment strategies is critical for informed treatment decisions. In this study, we have generated a specific kinome gene signature, named Kinome-27, which is able to identify a subset of HR-NBL tumors, named ultra-HR NBL, with highly aggressive clinical behavior that not adequately respond to standard treatments. We have demonstrated that NBL cell lines expressing the same kinome signature of ultra-HR tumors (ultra-HR-like cell lines) may be selectively targeted by the use of two drugs [suberoylanilide hydroxamic acid (SAHA) and Radicicol], and that the synergic combination of these drugs is able to block the ultra-HR-like cells in G2/M phase of cell cycle. The use of our signature in clinical practice will allow identifying patients with negative outcome, which would benefit from new and more personalized treatments. Preclinical in vivo studies are needed to consolidate the SAHA and Radicicol treatment in ultra-HR NBL patients.


Asunto(s)
Antineoplásicos/farmacología , Terapia Molecular Dirigida/métodos , Neuroblastoma/enzimología , Fosfotransferasas/genética , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Macrólidos/farmacología , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética
17.
Chemistry ; 23(2): 370-379, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27758047

RESUMEN

The interactions of 8-hydroxybenzo[b]quinolizinium and 9-hydroxybenzo[b]quinolizinium with DNA are investigated in detail. Specifically, spectrophotometric and spectrofluorimetric titrations, thermal DNA-denaturation experiments as well as CD- and LD-spectroscopic analysis show that a pH shift by just one or two orders of magnitude has a significant impact on the interactions of the acidic ligands with the nucleic acid. Both ligands bind with high affinity to DNA at pH 6 (Kb ≈105 m-1 ). At pH 7 or 8, however, the binding interactions are much weaker because of the formation of the corresponding charge-neutral conjugate bases, the affinity to DNA of which is reduced because of the resulting lack of a positive charge. Notably, the variation of DNA affinity occurs in a range that corresponds to the fluctuations of pH values under physiological conditions, so that these ligands may be employed to target DNA in tissue with particular pH values, especially, cancer cells. The antiproliferative activity of the title compounds under different conditions is also investigated. In the absence of irradiation, both compounds show only a modest cytotoxicity toward cancer cells. However, upon irradiation, even at low UV-A doses, a significant reduction of cell viability of tumor cell lines is induced by the ligands.


Asunto(s)
Antineoplásicos/farmacología , ADN/metabolismo , Sustancias Intercalantes/farmacología , Quinolizinas/farmacología , Rayos Ultravioleta , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Células Jurkat , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/efectos de la radiación
18.
Antimicrob Agents Chemother ; 60(1): 115-25, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26459907

RESUMEN

The heme-containing enzymes indoleamine 2,3-dioxygenase-1 (IDO-1) and IDO-2 catalyze the conversion of the essential amino acid tryptophan into kynurenine. Metabolites of the kynurenine pathway and IDO itself are involved in immunity and the pathology of several diseases, having either immunoregulatory or antimicrobial effects. IDO-1 plays a central role in the pathogenesis of cerebral malaria, which is the most severe and often fatal neurological complication of infection with Plasmodium falciparum. Mouse models are usually used to study the underlying pathophysiology. In this study, we screened a natural compound library against mouse IDO-1 and identified 8-aminobenzo[b]quinolizinium (compound 2c) to be an inhibitor of IDO-1 with potency at nanomolar concentrations (50% inhibitory concentration, 164 nM). Twenty-one structurally modified derivatives of compound 2c were synthesized for structure-activity relationship analyses. The compounds were found to be selective for IDO-1 over IDO-2. We therefore compared the roles of prominent amino acids in the catalytic mechanisms of the two isoenzymes via homology modeling, site-directed mutagenesis, and kinetic analyses. Notably, methionine 385 of IDO-2 was identified to interfere with the entrance of l-tryptophan to the active site of the enzyme, which explains the selectivity of the inhibitors. Most interestingly, several benzo[b]quinolizinium derivatives (6 compounds with 50% effective concentration values between 2.1 and 6.7 nM) were found to be highly effective against P. falciparum 3D7 blood stages in cell culture with a mechanism independent of IDO-1 inhibition. We believe that the class of compounds presented here has unique characteristics; it combines the inhibition of mammalian IDO-1 with strong antiparasitic activity, two features that offer potential for drug development.


Asunto(s)
Antimaláricos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Malaria/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Quinolizinas/farmacología , Animales , Antimaláricos/síntesis química , Antimaláricos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Clonación Molecular , Cristalografía por Rayos X , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/química , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Malaria/parasitología , Ratones , Mutagénesis Sitio-Dirigida , Plasmodium berghei/enzimología , Plasmodium berghei/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Quinolizinas/síntesis química , Quinolizinas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Triptófano/antagonistas & inhibidores , Triptófano/metabolismo
19.
Beilstein J Org Chem ; 12: 854-62, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27340476

RESUMEN

Cationic biaryl derivatives were synthesized by Suzuki-Miyaura coupling of 3-bromonaphtho[1,2-b]quinolizinium bromide with arylboronic acids. The resulting cationic biaryl derivatives exhibit pronounced fluorosolvatochromic properties. First photophysical studies in different solvents showed that the emission energy of the biaryl derivatives decreases with increasing solvent polarity. This red-shifted emission in polar solvents is explained by a charge shift (CS) in the excited state and subsequent solvent relaxation. Furthermore, the polarity of protic polar and aprotic polar solvents affects the emission energy to different extent, which indicates a major influence of hydrogen bonding on the stabilization of the ground and excited states.

20.
Org Biomol Chem ; 13(48): 11633-44, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26467486

RESUMEN

A small family of structural analogues of the antimitotic tripeptides, hemiasterlins, have been designed and synthesized as potential inhibitors of tubulin polymerization. The effectiveness of a multicomponent approach was fully demonstrated by applying complementary versions of the isocyanide-based Ugi reaction. Compounds strictly related to the lead natural products, as well as more extensively modified analogues, have been synthesized in a concise and convergent manner. In some cases, biological evaluation provided evidence for strong cytotoxic activity (six human tumor cell lines) and for potent inhibition of tubulin polymerization.


Asunto(s)
Antimitóticos , Técnicas de Química Analítica/métodos , Oligopéptidos/síntesis química , Aldehídos/síntesis química , Aldehídos/química , Antimitóticos/síntesis química , Antimitóticos/química , Antimitóticos/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Nitrilos/química , Oligopéptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA