Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Physiol Plant ; 164(2): 163-175, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29314007

RESUMEN

Physiology and genetics are tightly interrelated. Understanding the genetic basis of a physiological trait such as the quantum yield of the photosystem II, or photosynthetic responses to environmental changes will benefit the understanding of these processes. By means of chlorophyll fluorescence (CF) imaging, the quantum yield of photosystem II can be determined rapidly, precisely and non-invasively. In this article, the genetic control and variation in the steady-state quantum yield of PSII (ΦPSII ) is analyzed for diploid potato plants. Current progress in potato research and breeding is slow due to high levels of heterozygosity and complexity of tetraploid genetics. Diploid potatoes offer the possibility of overcoming this problem and advance research for one of the globally most important staple foods. With the help of a diploid genetic mapping population two genetic loci that were strongly associated with differences in ΦPSII were identified. This is a proof of principle that genetic analysis for ΦPSII can be done on potato. The effects of three different stress conditions that are important in potato cultivation were also tested: salt stress, low temperature and deficiency in the macronutrient phosphate. For the last two stresses, significant decreases in photosynthetic activity could be shown, revealing potential for stress detection with CF based tools. In general, our findings show the potential of high-throughput phenotyping for physiological research and breeding in potato.


Asunto(s)
Clorofila/metabolismo , Fotosíntesis/genética , Solanum tuberosum/genética , Frío , Diploidia , Fluorescencia , Variación Genética/genética
2.
Plant Cell ; 25(8): 3067-78, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23956261

RESUMEN

Phenylpropanoid volatiles are responsible for the key tomato fruit (Solanum lycopersicum) aroma attribute termed "smoky." Release of these volatiles from their glycosylated precursors, rather than their biosynthesis, is the major determinant of smoky aroma in cultivated tomato. using a combinatorial omics approach, we identified the non-smoky glycosyltransferase1 (NSGT1) gene. Expression of NSGT1 is induced during fruit ripening, and the encoded enzyme converts the cleavable diglycosides of the smoky-related phenylpropanoid volatiles into noncleavable triglycosides, thereby preventing their deglycosylation and release from tomato fruit upon tissue disruption. In an nsgt1/nsgt1 background, further glycosylation of phenylpropanoid volatile diglycosides does not occur, thereby enabling their cleavage and the release of corresponding volatiles. Using reverse genetics approaches, the NSGT1-mediated glycosylation was shown to be the molecular mechanism underlying the major quantitative trait locus for smoky aroma. Sensory trials with transgenic fruits, in which the inactive nsgt1 was complemented with the functional NSGT1, showed a significant and perceivable reduction in smoky aroma. NSGT1 may be used in a precision breeding strategy toward development of tomato fruits with distinct flavor phenotypes.


Asunto(s)
Frutas/enzimología , Glicosiltransferasas/metabolismo , Odorantes/análisis , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimología , Cromatografía Liquida , Segregación Cromosómica/genética , Cromosomas de las Plantas/genética , Eugenol/química , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Marcadores Genéticos , Genoma de Planta/genética , Glicósidos/química , Glicósidos/metabolismo , Glicosilación , Guayacol/química , Humanos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Espectrometría de Masas , Metaboloma/genética , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Salicilatos/química , Transcripción Genética
3.
BMC Genomics ; 15: 1152, 2014 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-25526885

RESUMEN

BACKGROUND: A RIL population between Solanum lycopersicum cv. Moneymaker and S. pimpinellifolium G1.1554 was genotyped with a custom made SNP array. Additionally, a subset of the lines was genotyped by sequencing (GBS). RESULTS: A total of 1974 polymorphic SNPs were selected to develop a linkage map of 715 unique genetic loci. We generated plots for visualizing the recombination patterns of the population relating physical and genetic positions along the genome.This linkage map was used to identify two QTLs for TYLCV resistance which contained favourable alleles derived from S. pimpinellifolium. Further GBS was used to saturate regions of interest, and the mapping resolution of the two QTLs was improved. The analysis showed highest significance on Chromosome 11 close to the region of 51.3 Mb (qTy-p11) and another on Chromosome 3 near 46.5 Mb (qTy-p3). Furthermore, we explored the population using untargeted metabolic profiling, and the most significant differences between susceptible and resistant plants were mainly associated with sucrose and flavonoid glycosides. CONCLUSIONS: The SNP information obtained from an array allowed a first QTL screening of our RIL population. With additional SNP data of a RILs subset, obtained through GBS, we were able to perform an in silico mapping improvement to further confirm regions associated with our trait of interest. With the combination of different ~ omics platforms we provide valuable insight into the genetics of S. pimpinellifolium-derived TYLCV resistance.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Técnicas de Genotipaje , Enfermedades de las Plantas/virología , Virus de Plantas/fisiología , Solanum/genética , Solanum/virología , Alelos , Simulación por Computador , Genoma de Planta/genética , Endogamia , Metaboloma , Enfermedades de las Plantas/inmunología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , Análisis de Secuencia , Solanum/inmunología , Solanum/metabolismo
4.
BMC Genomics ; 14: 354, 2013 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-23711327

RESUMEN

BACKGROUND: The major bottle neck in genetic and linkage studies in tomato has been the lack of a sufficient number of molecular markers. This has radically changed with the application of next generation sequencing and high throughput genotyping. A set of 6000 SNPs was identified and 5528 of them were used to evaluate tomato germplasm at the level of species, varieties and segregating populations. RESULTS: From the 5528 SNPs, 1980 originated from 454-sequencing, 3495 from Illumina Solexa sequencing and 53 were additional known markers. Genotyping different tomato samples allowed the evaluation of the level of heterozygosity and introgressions among commercial varieties. Cherry tomatoes were especially different from round/beefs in chromosomes 4, 5 and 12. We were able to identify a set of 750 unique markers distinguishing S. lycopersicum 'Moneymaker' from all its distantly related wild relatives. Clustering and neighbour joining analysis among varieties and species showed expected grouping patterns, with S. pimpinellifolium as the most closely related to commercial tomatoes earlier results. CONCLUSIONS: Our results show that a SNP search in only a few breeding lines already provides generally applicable markers in tomato and its wild relatives. It also shows that the Illumina bead array generated data are highly reproducible. Our SNPs can roughly be divided in two categories: SNPs of which both forms are present in the wild relatives and in domesticated tomatoes (originating from common ancestors) and SNPs unique for the domesticated tomato (originating from after the domestication event). The SNPs can be used for genotyping, identification of varieties, comparison of genetic and physical linkage maps and to confirm (phylogenetic) relations. In the SNPs used for the array there is hardly any overlap with the SolCAP array and it is strongly recommended to combine both SNP sets and to select a core collection of robust SNPs completely covering the entire tomato genome.


Asunto(s)
Cruzamiento , Genómica , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Solanum lycopersicum/genética , Mapeo Cromosómico , Células Germinativas/citología , Células Germinativas/metabolismo , Hibridación Genética , Solanum lycopersicum/clasificación , Filogenia , Especificidad de la Especie
5.
Front Plant Sci ; 7: 1428, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27733856

RESUMEN

Semi-polar metabolites such as flavonoids, phenolic acids, and alkaloids are very important health-related compounds in tomato. As a first step to identify genes responsible for the synthesis of semi-polar metabolites, quantitative trait loci (QTLs) that influence the semi-polar metabolite content in red-ripe tomato fruit were identified, by characterizing fruits of a population of introgression lines (ILs) derived from a cross between the cultivated tomato Solanum lycopersicum and the wild species Solanum chmielewskii. By analyzing fruits of plants grown at two different locations, we were able to identify robust metabolite QTLs for changes in phenylpropanoid glycoconjugation on chromosome 9, for accumulation of flavonol glycosides on chromosome 5, and for alkaloids on chromosome 7. To further characterize the QTLs we used a combination of genome sequencing, transcriptomics and targeted metabolomics to identify candidate key genes underlying the observed metabolic variation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA