Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Europace ; 25(3): 1015-1024, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36746553

RESUMEN

AIMS: Stereotactic arrhythmia radiotherapy (STAR) is suggested as potentially effective and safe treatment for patients with therapy-refractory ventricular tachycardia (VT). However, the current prospective knowledge base and experience with STAR is limited. In this study we aimed to prospectively evaluate the efficacy and safety of STAR. METHODS AND RESULTS: The StereoTactic Arrhythmia Radiotherapy in the Netherlands no.1 was a pre-post intervention study to prospectively evaluate efficacy and safety of STAR. In patients with therapy-refractory VT, the pro-arrhythmic region was treated with a 25 Gy single radiotherapy fraction. The main efficacy measure was a reduction in the number of treated VT-episodes by ≥50%, comparing the 12 months before and after treatment (or end of follow-up, excluding a 6-week blanking period). The study was deemed positive when ≥50% of patients would meet this criterion. Safety evaluation included left ventricular ejection fraction, pulmonary function, and adverse events. Six male patients with an ischaemic cardiomyopathy were enrolled, and median age was 73 years (range 54-83). Median left ventricular ejection fraction was 38% (range 24-52). The median planning target volume was 187 mL (range 93-372). Four (67%) patients completed the 12-month follow-up, and two patients died (not STAR related) during follow-up. The main efficacy measure of ≥50% reduction in treated VT-episodes at the end of follow-up was achieved in four patients (67%). The median number of treated VT-episodes was reduced by 87%. No reduction in left ventricular ejection fraction or pulmonary function was observed. No treatment related serious adverse events occurred. CONCLUSIONS: STAR resulted in a ≥ 50% reduction in treated VT-episodes in 4/6 (67%) patients. No reduction in cardiac and pulmonary function nor treatment-related serious adverse events were observed during follow-up. CLINICAL TRIAL REGISTRATION: Netherlands Trial Register-NL7510.


Asunto(s)
Radiocirugia , Taquicardia Ventricular , Anciano , Anciano de 80 o más Años , Humanos , Masculino , Persona de Mediana Edad , Corazón , Radiocirugia/efectos adversos , Radiocirugia/métodos , Volumen Sistólico , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/radioterapia , Resultado del Tratamiento , Función Ventricular Izquierda
2.
Clin Otolaryngol ; 46(2): 347-356, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33253462

RESUMEN

OBJECTIVES: Tonsillectomy and adenoidectomy in children are controversial subjects with large regional variation in surgical rates, partly explained by cultural differences and lack of high-quality evidence on indications for surgery. A quality of care cycle was executed on this topic in the Netherlands. The objective of this study was to estimate changes in healthcare utilisation for paediatric tonsil surgery in the Netherlands. METHODS: Population-based data on tonsillectomies and adenoidectomies in children up to age 10 were retrieved retrospectively from Dutch administrative databases between 2005 and 2018. A change point analysis was performed to detect the most pivotal change point in surgical rates. We performed univariate analyses to compare surgical patients' characteristics before and after the pivotalpoint . Impact on healthcare budget and societal costs were estimated using current prices and data from cost-effectiveness analyses. RESULTS: The annual number of adenotonsillectomies reduced by 10 952 procedures (-39%; from 129 per 10 000 children to 87 per 10 000 children) between 2005 and 2018, and the number of adenoidectomies by 14 757 procedures (-49%; from 138 per 10 000 children to 78 per 10 000 children). The most pivotal change point was observed around 2012, accompanied by small changes in patient selection for surgery before and after 2012. An estimated €5.3 million per year was saved on the healthcare budget and €10.4 million per year on societal costs. CONCLUSION: The quality of care cycle resulted in fewer operations, with a concomitant reduction of costs. We suggest that part of these savings be invested in new research to maintain the quality of care cycle.


Asunto(s)
Adenoidectomía/estadística & datos numéricos , Aceptación de la Atención de Salud/estadística & datos numéricos , Tonsilectomía/estadística & datos numéricos , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Países Bajos
3.
J Appl Clin Med Phys ; 20(1): 276-283, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30414252

RESUMEN

BACKGROUND: While four-dimensional computed tomography (4DCT) is extensively used in adults, reluctance remains to use 4DCT in children. Day-to-day (interfractional) variability and irregular respiration (intrafractional variability) have shown to be limiting factors of 4DCT effectiveness in adults. In order to evaluate 4DCT applicability in children, the purpose of this study is to quantify inter- and intrafractional variability of respiratory motion in children and adults. The pooled analysis enables a solid comparison to reveal if 4DCT application for planning purposes in children could be valid. METHODS/MATERIALS: We retrospectively included 90 patients (45 children and 45 adults), for whom the diaphragm was visible on abdominal/thoracic free-breathing cone beam CTs (480 pediatric, 524 adult CBCTs). For each CBCT, the cranial-caudal position of end-exhale and end-inhale positions of the right diaphragm dome were manually selected in the projection images. The difference in position between both phases defines the amplitude. Cycle time equaled inspiratory plus expiratory time. We analyzed the variability of the inter- and intrafractional respiratory-induced diaphragm motion. RESULTS: Ranges of respiratory motion characteristics were large in both children and adults (amplitude: 4-17 vs 5-24 mm, cycle time 2.1-3.9 vs 2.7-6.5 s). The mean amplitude was slightly smaller in children than in adults (10.7 vs 12.3 mm; P = 0.06). Interfractional amplitude variability was statistically significantly smaller in children than in adults (1.4 vs 2.2 mm; P = 0.00). Mean cycle time was statistically significantly shorter in children (2.9 vs 3.6 s; P = 0.00). Additionally, intrafractional cycle time variability was statistically significantly smaller in children (0.5 vs 0.7 s; P = 0.00). CONCLUSIONS: Overall variability is smaller in children than in adults, indicating that respiratory motion is more regular in children than in adults. This implies that a single pretreatment 4DCT could be a good representation of daily respiratory motion in children and will be at least equally beneficial for planning purposes as it is in adults.


Asunto(s)
Tomografía Computarizada Cuatridimensional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Técnicas de Imagen Sincronizada Respiratorias/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos , Adulto Joven
4.
Acta Oncol ; 57(12): 1646-1654, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30289340

RESUMEN

PURPOSE: To investigate the dosimetric effect of variable gas volume in esophageal cancer radiation therapy (RT) and whether a density override (DO) in treatment planning can effectively mitigate this dosimetric effect. MATERIAL AND METHODS: Nine patients with gastrointestinal gas pockets in the planning computed tomography (pCT) were retrospectively included. Per patient, the intensity-modulated RT (IMRT) and volumetric-modulated arc therapy (VMAT) plans associated with no DO, DO = 0.5, and DO = 1 in the gas pockets were made. Initial and follow-up gas volumes were assessed from the pCTs and cone-beam CTs (CBCTs), respectively. Fractional CTs were created based on the pCT and CBCTs to calculate the fractional doses using all six plans. We then investigated for all six plans the correlation between the gas volume difference (relative to initial gas volume) and the dose difference (relative to planned dose). We also calculated and compared the accumulated dose by summing the fractional doses using two strategies: single-plan strategy (i.e. using each of the six plans separately) and plan-selection strategy (i.e. selecting one of the three plans depending on the fractional gas volume for IMRT and VMAT planning separately). RESULTS: The dose difference was approximately linearly correlated to the gas volume difference. Underdoses of >3.5% and overdoses of >7% were found for gas volume decreases >160 mL/330 mL and increases >260 mL/370 mL for IMRT/VMAT planning, respectively. Moreover, for most patients, the single-plan strategy with the use of DO = 0.5 resulted in neither undesired underdose nor much overdose. The plan-selection strategy, however, can always ensure sufficient target coverage and minimize high dose regions to the most extent. CONCLUSIONS: The variation in gas volume during the treatment course can result in clinically undesired underdose or overdose. The DO-based plan-selection strategy can effectively mitigate the gas-induced underdose and minimize the overdose for esophageal cancer RT.


Asunto(s)
Neoplasias Esofágicas/radioterapia , Esófago/diagnóstico por imagen , Gases , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Anciano , Neoplasias Esofágicas/diagnóstico por imagen , Neoplasias Esofágicas/patología , Esófago/patología , Femenino , Humanos , Intestinos/fisiología , Masculino , Persona de Mediana Edad , Radiometría/métodos , Radiometría/estadística & datos numéricos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/estadística & datos numéricos , Radioterapia de Intensidad Modulada/estadística & datos numéricos , Estudios Retrospectivos , Estómago/fisiología , Tomografía Computarizada por Rayos X
5.
Acta Oncol ; 57(9): 1240-1249, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29698060

RESUMEN

PURPOSE: Conventional techniques (3D-CRT) for craniospinal irradiation (CSI) are still widely used. Modern techniques (IMRT, VMAT, TomoTherapy®, proton pencil beam scanning [PBS]) are applied in a limited number of centers. For a 14-year-old patient, we aimed to compare dose distributions of five CSI techniques applied across Europe and generated according to the participating institute protocols, therefore representing daily practice. MATERIAL AND METHODS: A multicenter (n = 15) dosimetric analysis of five different techniques for CSI (3D-CRT, IMRT, VMAT, TomoTherapy®, PBS; 3 centers per technique) was performed using the same patient data, set of delineations and dose prescription (36.0/1.8 Gy). Different treatment plans were optimized based on the same planning target volume margin. All participating institutes returned their best treatment plan applicable in clinic. RESULTS: The modern radiotherapy techniques investigated resulted in superior conformity/homogeneity-indices (CI/HI), particularly in the spinal part of the target (CI: 3D-CRT:0.3 vs. modern:0.6; HI: 3D-CRT:0.2 vs. modern:0.1), and demonstrated a decreased dose to the thyroid, heart, esophagus and pancreas. Dose reductions of >10.0 Gy were observed with PBS compared to modern photon techniques for parotid glands, thyroid and pancreas. Following this technique, a wide range in dosimetry among centers using the same technique was observed (e.g., thyroid mean dose: VMAT: 5.6-24.6 Gy; PBS: 0.3-10.1 Gy). CONCLUSIONS: The investigated modern radiotherapy techniques demonstrate superior dosimetric results compared to 3D-CRT. The lowest mean dose for organs at risk is obtained with proton therapy. However, for a large number of organs ranges in mean doses were wide and overlapping between techniques making it difficult to recommend one radiotherapy technique over another.


Asunto(s)
Irradiación Craneoespinal/métodos , Pautas de la Práctica en Medicina/estadística & datos numéricos , Oncología por Radiación , Adolescente , Comités Consultivos/organización & administración , Irradiación Craneoespinal/estadística & datos numéricos , Europa (Continente)/epidemiología , Humanos , Masculino , Órganos en Riesgo/efectos de la radiación , Oncología por Radiación/métodos , Oncología por Radiación/organización & administración , Radiometría/métodos , Radiometría/normas , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Planificación de la Radioterapia Asistida por Computador/normas
6.
Strahlenther Onkol ; 193(8): 630-638, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28608305

RESUMEN

BACKGROUND: The Dutch Pancreatic Cancer Group initiated the national, multicentre, controlled PREOPANC trial, randomising between preoperative radiochemotherapy and direct explorative laparotomy for patients with (borderline) resectable pancreatic cancer. The aim of this dummy run is to evaluate compliance with the radiotherapy protocol of this trial, and the quality of delineation and radiation plans. METHODS: Eleven radiation oncology departments open for accrual of patients in the PREOPANC trial were provided with all necessary information of a selected 'dummy' patient. Each institute was asked to delineate the target volumes, including gross tumour volume, internal gross tumour volume (iGTV), internal clinical target volume, and planning target volume. The institutions were also asked to provide a radiation treatment plan in accordance with the PREOPANC trial protocol. RESULTS: The range of the iGTV was 19.3-77.2 cm3 with a mean iGTV of 41.5 cm3 (standard deviation 14.8 cm3). Nine institutions made a treatment plan using an arc technique for treatment delivery, one an intensity modulated technique and one a 3-field conformal technique. All institutions reached the prescribed target coverage, without exceeding the organs at risk constraints. The institution with the 3­field conformal technique was advised to use a more sophisticated technique (e. g. volumetric modulated arc therapy) to reduce the dose to the spinal cord. CONCLUSION: All institutions showed acceptable deviations from the PREOPANC trial protocol and achieved an acceptable quality of delineation and radiation technique. All institutions were allowed to continue participation in the PREOPANC trial.


Asunto(s)
Quimioradioterapia Adyuvante/normas , Neoplasias Pancreáticas/radioterapia , Cuidados Preoperatorios/normas , Garantía de la Calidad de Atención de Salud/métodos , Planificación de la Radioterapia Asistida por Computador/normas , Radioterapia de Intensidad Modulada/normas , Adulto , Quimioradioterapia Adyuvante/estadística & datos numéricos , Femenino , Adhesión a Directriz/estadística & datos numéricos , Humanos , Masculino , Países Bajos , Pancreatectomía/normas , Neoplasias Pancreáticas/cirugía , Cuidados Preoperatorios/estadística & datos numéricos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/estadística & datos numéricos , Radioterapia de Intensidad Modulada/estadística & datos numéricos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Resultado del Tratamiento , Carga Tumoral
7.
Acta Oncol ; 56(5): 667-674, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28447562

RESUMEN

BACKGROUND: Radiation therapy (RT) using a daily plan selection adaptive strategy can be applied to account for interfraction organ motion while limiting organ at risk dose. The aim of this study was to quantify the dosimetric consequences of daily plan selection compared with non-adaptive RT in cervical cancer. MATERIAL AND METHODS: Ten consecutive patients who received pelvic irradiation, planning CTs (full and empty bladder), weekly post-fraction CTs and pre-fraction CBCTs were included. Non-adaptive plans were generated based on the PTV defined using the full bladder planning CT. For the adaptive strategy, multiple PTVs were created based on both planning CTs by ITVs of the primary CTVs (i.e., GTV, cervix, corpus-uterus and upper part of the vagina) and corresponding library plans were generated. Daily CBCTs were rigidly aligned to the full bladder planning CT for plan selection. For daily plan recalculation, selected CTs based on initial similarity were deformably registered to CBCTs. Differences in daily target coverage (D98% > 95%) and in V0.5Gy, V1.5Gy, V2Gy, D50% and D2% for rectum, bladder and bowel were assessed. RESULTS: Non-adaptive RT showed inadequate primary CTV coverage in 17% of the daily fractions. Plan selection compensated for anatomical changes and improved primary CTV coverage significantly (p < 0.01) to 98%. Compared with non-adaptive RT, plan selection decreased the fraction dose to rectum and bowel indicated by significant (p < 0.01) improvements for daily V0.5Gy, V1.5Gy, V2Gy, D50% and D2%. However, daily plan selection significantly increased the bladder V1.5Gy, V2Gy, D50% and D2%. CONCLUSIONS: In cervical cancer RT, a non-adaptive strategy led to inadequate target coverage for individual patients. Daily plan selection corrected for day-to-day anatomical variations and resulted in adequate target coverage in all fractions. The dose to bowel and rectum was decreased significantly when applying adaptive RT.


Asunto(s)
Órganos en Riesgo/efectos de la radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada , Neoplasias del Cuello Uterino/radioterapia , Femenino , Estudios de Seguimiento , Humanos , Pronóstico , Dosificación Radioterapéutica , Recto/efectos de la radiación , Estudios Retrospectivos , Vejiga Urinaria/efectos de la radiación
8.
Acta Oncol ; 56(8): 1065-1071, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28281356

RESUMEN

BACKGROUND: Pediatric safety margins are generally based on data from adult studies; however, adult-based margins might be too large for children. The aim of this study was to quantify and compare interfractional organ position variation in children and adults. MATERIAL AND METHODS: For 35 children and 35 adults treated with thoracic/abdominal irradiation, 850 (range 5-30 per patient) retrospectively collected cone beam CT images were registered to the reference CT that was used for radiation treatment planning purposes. Renal position variation was assessed in three orthogonal directions and summarized as 3D vector lengths. Diaphragmatic position variation was assessed in the cranio-caudal (CC) direction only. We calculated means and SDs to estimate group systematic (Σ) and random errors (σ) of organ position variation. Finally, we investigated possible correlations between organ position variation and patients' height. RESULTS: Interfractional organ position variation was different in children and adults. Median 3D right and left kidney vector lengths were significantly smaller in children than in adults (2.8, 2.9 mm vs. 5.6, 5.2 mm, respectively; p < .05). Generally, the pediatric Σ and σ were significantly smaller than in adults (p < .007). Overall and within both subgroups, organ position variation and patients' height were only negligibly correlated. CONCLUSIONS: Interfractional renal and diaphragmatic position variation in children is smaller than in adults indicating that pediatric margins should be defined differently from adult margins. Underlying mechanisms and other components of geometrical uncertainties need further investigation to explain differences and to appropriately define pediatric safety margins.


Asunto(s)
Diafragma/efectos de la radiación , Riñón/efectos de la radiación , Neoplasias/radioterapia , Órganos en Riesgo/efectos de la radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Adulto Joven
9.
J Appl Clin Med Phys ; 18(6): 142-151, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28980445

RESUMEN

Pancreatic tumors show large interfractional position variation. In addition, changes in gastrointestinal gas volumes and body contour take place over the course of radiation therapy. We aimed to quantify the effect of these anatomical changes on target dose coverage, for the clinically used fiducial marker-based patient position verification and, for comparison, also for simulated bony anatomy-based position verification. Nine consecutive patients were included in this retrospective study. To enable fraction dose calculations on cone-beam CT (CBCT), the planning CT was deformably registered to each CBCT (13-15 per patient); gas volumes visible on CBCT were copied to the deformed CT. Fraction doses were calculated for the clinically used 10 MV VMAT treatment plan (with for the planning target volume (PTV): D98% = 95%), according to fiducial marker-based and bony anatomy-based image registrations. Dose distributions were rigidly summed to yield the accumulated dose. To evaluate target dose coverage, we defined an iCTV+5 mm volume, i.e., the internal clinical target volume (iCTV) expanded with a 5 mm margin to account for remaining uncertainties including delineation uncertainties. We analyzed D98% , Dmean , and D2% for iCTV+5 mm and PTV (i.e., iCTV plus 10 mm margin). We found that for fiducial marker-based registration, differences between fraction doses and planned dose were minimal. For bony anatomy-based registration, fraction doses differed considerably, resulting in large differences between planned and accumulated dose for some patients, up to a decrease in D98% of the iCTV+5 mm from 95.9% to 85.8%. Our study shows that fractionated photon irradiation of pancreatic tumors is robust against variations in body contour and gastrointestinal gas, with dose coverage only mildly affected. However, as a result of interfractional tumor position variations, target dose coverage can severely decline when using bony anatomy for patient position verification. Therefore, the use of intratumoral fiducial marker-based daily position verification is essential in pancreatic cancer patients.


Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Neoplasias Pancreáticas/patología , Fotones/uso terapéutico , Planificación de la Radioterapia Asistida por Computador/métodos , Marcadores Fiduciales , Humanos , Movimiento , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/radioterapia , Radiometría/métodos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos
10.
Acta Oncol ; 55(7): 892-9, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26934821

RESUMEN

Background Image-guided adaptive proton therapy (IGAPT) can potentially be applied to take into account interfraction motion while limiting organ at risk (OAR) dose in cervical cancer radiation therapy (RT). In this study, the potential dosimetric advantages of IGAPT compared with photon-based image-guided adaptive RT (IGART) were investigated. Material and methods For 13 cervical cancer patients, full and empty bladder planning computed tomography (CT) images and weekly CTs were acquired. Based on both primary clinical target volumes (pCTVs) [i.e. gross tumor volume (GTV), cervix, corpus-uterus and upper part of the vagina] on planning CTs, the pretreatment observed full range primary internal target volume (pITV) was interpolated to derive pITV subranges. Given corresponding ITVs (i.e. pITVs including lymph nodes), patient-specific photon and proton plan libraries were generated. Using all weekly CTs, IGART and IGAPT treatments were simulated by selecting library plans and recalculating the dose. For each recalculated IGART and IGAPT fraction, CTV (i.e. pCTV including lymph nodes) coverage was assessed and differences in fractionated substitutes of dose-volume histogram (DVH) parameters (V15Gy, V30Gy, V45Gy, Dmean, D2cc) for bladder, bowel and rectum were tested for significance (Wilcoxon signed-rank test). Also, differences in toxicity-related DVH parameters (rectum V30Gy, bowel V45Gy) were approximated based on accumulated dose distributions. Results In 92% (96%) of all recalculated IGAPT (IGART) fractions adequate CTV coverage (V95% >98%) was obtained. All dose parameters for bladder, bowel and rectum, except the fractionated substitute for rectum V45Gy, were improved using IGAPT. Also, IGAPT reduced the mean dose to bowel, bladder and rectum significantly (p < 0.01). In addition, an average decrease of rectum V30Gy and bowel V45Gy indicated reductions in toxicity probabilities when using IGAPT. Conclusion This study demonstrates the feasibility of IGAPT in cervical cancer using a plan-library based plan-of-the-day approach. Compared to photon-based IGART, IGAPT maintains target coverage while significant dose reductions for the bladder, bowel and rectum can be achieved.


Asunto(s)
Terapia de Protones/métodos , Radioterapia Guiada por Imagen/métodos , Neoplasias del Cuello Uterino/radioterapia , Fraccionamiento de la Dosis de Radiación , Femenino , Humanos , Órganos en Riesgo/efectos de la radiación , Fotones , Terapia de Protones/efectos adversos , Dosis de Radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/efectos adversos , Recto/efectos de la radiación , Vejiga Urinaria/efectos de la radiación
11.
Radiother Oncol ; 182: 109582, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36842661

RESUMEN

BACKGROUND AND PURPOSE: The stomach experiences large volume and shape changes during pre-operative gastric radiotherapy. This study evaluates the dosimetric benefit for organs-at-risk (OARs) of a library of plans (LoP) compared to the traditional single-plan (SP) strategy. MATERIALS AND METHODS: Twelve patients who received SP CBCT-guided pre-operative gastric radiotherapy (45 Gy; 25 fractions) were included. Clinical target volume (CTV) consisted of CTVstomach (i.e., stomach + 10 mm uniform margin minus OARs) and CTVLN (i.e., regional lymph node stations). For LoP, five stomach volumes (approximately equidistant with fixed volumes) were created using a previously developed stomach deformation model (volume = 150-750 mL). Appropriate planning target volume (PTV) margins were calculated for CTVstomach (SP and LoP, separately) and CTVLN. Treatment plans were automatically generated/optimized and the best-fitting library plan was manually selected for each daily CBCT. OARs (i.e., liver, kidneys, heart, spleen, spinal canal) doses were accumulated and dose-volume histogram (DVH) parameters were evaluated. RESULTS: The non-isotropic PTVstomach margins were significantly (p < 0.05) smaller for LoP than SP (median = 13.1 vs 19.8 mm). For each patient, the average PTV was smaller using a LoP (difference range 134-1151 mL). For all OARs except the kidneys, DVH parameters were significantly reduced using a LoP. Differences in mean dose (Dmean) for liver, heart and spleen ranged between -1.8 to 5.7 Gy. For LoP, a benefit of heart Dmean > 4 Gy and spleen Dmean > 2 Gy was found in 4 and 5 patients, respectively. CONCLUSION: A LoP strategy for pre-operative gastric cancer reduced average PTV and reduced OAR dose compared to a SP strategy, thereby potentially reducing risks for radiation-induced toxicities.


Asunto(s)
Radioterapia de Intensidad Modulada , Neoplasias Gástricas , Humanos , Dosificación Radioterapéutica , Neoplasias Gástricas/radioterapia , Planificación de la Radioterapia Asistida por Computador , Órganos en Riesgo
12.
Radiat Oncol ; 18(1): 165, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803392

RESUMEN

PURPOSE: The aim was to assess the feasibility of online adaptive radiotherapy (oART) for bladder cancer using a focal boost by focusing on the quality of the online treatment plan and automatic target delineation, duration of the workflow and performance in the presence of fiducial markers for tumor bed localization. METHODS: Fifteen patients with muscle invasive bladder cancer received daily oART with Cone Beam CT (CBCT), artificial intelligence (AI)-assisted automatic delineation of the daily anatomy and online plan reoptimization. The bladder and pelvic lymph nodes received a total dose of 40 Gy in 20 fractions, the tumor received an additional simultaneously integrated boost (SIB) of 15 Gy. The dose distribution of the reference plan was calculated for the daily anatomy, i.e. the scheduled plan. Simultaneously, a reoptimization of the plan was performed i.e. the adaptive plan. The target coverage and V95% outside the target were evaluated for both plans. The need for manual adjustments of the GTV delineation, the duration of the workflow and the influence of fiducial markers were assessed. RESULTS: All 300 adaptive plans met the requirement of the CTV-coverage V95%≥98% for both the boost (55 Gy) and elective volume (40 Gy). For the scheduled plans the CTV-coverage was 53.5% and 98.5%, respectively. Significantly less tissue outside the targets received 55 Gy in case of the adaptive plans as compared to the scheduled plans. Manual corrections of the GTV were performed in 67% of the sessions. In 96% of these corrections the GTV was enlarged and resulted in a median improvement of 1% for the target coverage. The median on-couch time was 22 min. A third of the session time consisted of reoptimization of the treatment plan. Fiducial markers were visible on the CBCTs and aided the tumor localization. CONCLUSIONS: AI-driven CBCT-guided oART aided by fiducial markers is feasible for bladder cancer radiotherapy treatment including a SIB. The quality of the adaptive plans met the clinical requirements and fiducial markers were visible enabling consistent daily tumor localization. Improved automatic delineation to lower the need for manual corrections and faster reoptimization would result in shorter session time.


Asunto(s)
Radioterapia Conformacional , Radioterapia Guiada por Imagen , Radioterapia de Intensidad Modulada , Neoplasias de la Vejiga Urinaria , Humanos , Marcadores Fiduciales , Planificación de la Radioterapia Asistida por Computador/métodos , Inteligencia Artificial , Neoplasias de la Vejiga Urinaria/radioterapia , Neoplasias de la Vejiga Urinaria/patología , Radioterapia Conformacional/métodos , Dosificación Radioterapéutica , Radioterapia Guiada por Imagen/métodos , Radioterapia de Intensidad Modulada/métodos
13.
Radiother Oncol ; 182: 109538, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36806603

RESUMEN

BACKGROUND AND PURPOSE: Standard palliative radiotherapy workflows involve waiting times or multiple clinic visits. We developed and implemented a rapid palliative workflow using diagnostic imaging (dCT) for pre-planning, with subsequent on-couch target and plan adaptation based on a synthetic computed tomography (CT) obtained from cone-beam CT imaging (CBCT). MATERIALS AND METHODS: Patients with painful bone metastases and recent diagnostic imaging were eligible for inclusion in this prospective, ethics-approved study. The workflow consisted of 1) telephone consultation with a radiation oncologist (RO); 2) pre-planning on the dCT using planning templates and mostly intensity-modulated radiotherapy; 3) RO consultation on the day of treatment; 4) CBCT scan with on-couch adaptation of the target and treatment plan; 5) delivery of either scheduled or adapted treatment plan. Primary outcomes were dosimetric data and treatment times; secondary outcome was patient satisfaction. RESULTS: 47 patients were enrolled between December 2021 and October 2022. In all treatments, adapted treatment plans were chosen due to significant improvements in target coverage (PTV/CTV V95%, p-value < 0.005) compared to the original treatment plan calculated on daily anatomy. Most patients were satisfied with the workflow. The average treatment time, including consultation and on-couch adaptive treatment, was 85 minutes. On-couch adaptation took on average 30 min. but was longer in cases where the automated deformable image registration failed to correctly propagate the targets. CONCLUSION: A fast treatment workflow for patients referred for painful bone metastases was implemented successfully using online adaptive radiotherapy, without a dedicated CT simulation. Patients were generally satisfied with the palliative radiotherapy workflow.


Asunto(s)
Radioterapia Guiada por Imagen , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Estudios Prospectivos , Derivación y Consulta , Teléfono , Radioterapia de Intensidad Modulada/métodos , Tomografía Computarizada de Haz Cónico/métodos , Radioterapia Guiada por Imagen/métodos
14.
Radiother Oncol ; 189: 109910, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37709052

RESUMEN

BACKGROUND: Stereotactic arrhythmia radioablation (STAR) appears to be beneficial in selected patients with therapy-refractory ventricular tachycardia (VT). However, high-dose radiotherapy used for STAR-treatment may affect functioning of the patients' implantable cardioverter defibrillator (ICD) by direct effects of radiation on ICD components or cardiac tissue. Currently, the effect of STAR on ICD functioning remains unknown. METHODS: A retrospective pre-post multicenter study evaluating ICD functioning in the 12-month before and after STAR was performed. Patients with (non)ischemic cardiomyopathies with therapy-refractory VT and ICD who underwent STAR were included and the occurrence of ICD-related adverse events was collected. Evaluated ICD parameters included sensing, capture threshold and impedance. A linear mixed-effects model was used to investigate the association between STAR, radiotherapy dose and changes in lead parameters over time. RESULTS: In total, 43 patients (88% male) were included in this study. All patients had an ICD with an additional right atrial lead in 34 (79%) and a ventricular lead in 17 (40%) patients. Median ICD-generator dose was 0.1 Gy and lead tip dose ranged from 0-32 Gy. In one patient (2%), a reset occurred during treatment, but otherwise, STAR and radiotherapy dose were not associated with clinically relevant alterations in ICD leads parameters. CONCLUSIONS: STAR treatment did not result in major ICD malfunction. Only one radiotherapy related adverse event occurred during the study follow-up without patient harm. No clinically relevant alterations in ICD functioning were observed after STAR in any of the leads. With the reported doses STAR appears to be safe.


Asunto(s)
Desfibriladores Implantables , Isquemia Miocárdica , Taquicardia Ventricular , Humanos , Masculino , Femenino , Desfibriladores Implantables/efectos adversos , Taquicardia Ventricular/etiología , Taquicardia Ventricular/terapia , Estudios Retrospectivos , Arritmias Cardíacas/etiología , Isquemia Miocárdica/etiología , Resultado del Tratamiento
15.
Radiother Oncol ; 189: 109949, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37827279

RESUMEN

BACKGROUND AND PURPOSE: In patients with recurrent ventricular tachycardia (VT), STereotactic Arrhythmia Radioablation (STAR) shows promising results. The STOPSTORM.eu consortium was established to investigate and harmonise STAR treatment in Europe. The primary goals of this benchmark study were to standardise contouring of organs at risk (OAR) for STAR, including detailed substructures of the heart, and accredit each participating centre. MATERIALS AND METHODS: Centres within the STOPSTORM.eu consortium were asked to delineate 31 OAR in three STAR cases. Delineation was reviewed by the consortium expert panel and after a dedicated workshop feedback and accreditation was provided to all participants. Further quantitative analysis was performed by calculating DICE similarity coefficients (DSC), median distance to agreement (MDA), and 95th percentile distance to agreement (HD95). RESULTS: Twenty centres participated in this study. Based on DSC, MDA and HD95, the delineations of well-known OAR in radiotherapy were similar, such as lungs (median DSC = 0.96, median MDA = 0.1 mm and median HD95 = 1.1 mm) and aorta (median DSC = 0.90, median MDA = 0.1 mm and median HD95 = 1.5 mm). Some centres did not include the gastro-oesophageal junction, leading to differences in stomach and oesophagus delineations. For cardiac substructures, such as chambers (median DSC = 0.83, median MDA = 0.2 mm and median HD95 = 0.5 mm), valves (median DSC = 0.16, median MDA = 4.6 mm and median HD95 = 16.0 mm), coronary arteries (median DSC = 0.4, median MDA = 0.7 mm and median HD95 = 8.3 mm) and the sinoatrial and atrioventricular nodes (median DSC = 0.29, median MDA = 4.4 mm and median HD95 = 11.4 mm), deviations between centres occurred more frequently. After the dedicated workshop all centres were accredited and contouring consensus guidelines for STAR were established. CONCLUSION: This STOPSTORM multi-centre critical structure contouring benchmark study showed high agreement for standard radiotherapy OAR. However, for cardiac substructures larger disagreement in contouring occurred, which may have significant impact on STAR treatment planning and dosimetry evaluation. To standardize OAR contouring, consensus guidelines for critical structure contouring in STAR were established.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Taquicardia Ventricular , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Benchmarking , Corazón , Vasos Coronarios , Taquicardia Ventricular/radioterapia , Taquicardia Ventricular/cirugía
16.
Adv Radiat Oncol ; 7(4): 100928, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35387177

RESUMEN

Purpose: Cardiac radioablation has evolved as a potential treatment modality for therapy-refractory ventricular tachycardia. To standardize cardiac radioablation treatments, promote accurate communication and target identification, and to assess toxicity, robust, and reproducible methods for angulation and cardiac segmentation are paramount. In this study, we developed and evaluated a tool for semiautomated angulation and segmentation according to the American Heart Association 17-segment model. Methods and Materials: The semiautomated angulation and segmentation of the planning-computed tomography (CT) was based on an in-house developed tool requiring placement of only 4 point-markers and a rotation matrix. For angulation, 2 markers defining the cardiac long-axis were placed: at the cardiac apex and at the center of the mitral valve. A rotation matrix was derived that angulates the CT volume, resulting in the cardiac short axis. Segmentation was subsequently performed based on marking the 2 left ventricular hinge points. To evaluate reproducibility, 5 observers independently placed markers in planning CTs of 6 patients. Results: The root mean square of the standard deviation for the angulation and segmentation marker positions were ≤0.5 cm. The 17 segments were subsequently generated and compared between the observers resulting in a median Dice coefficient of 0.8 (interquartile range: 0.70-0.87) and a median of the mean Hausdorff distance of 0.09 cm (interquartile range: 0.05-0.17). The interquartile ranges of Euler angles α and ß, determined by the angulation markers, was less than 3 degrees for all patients except one. For the γ angle, determined by the hinge point markers, the interquartile range was up to 12 degrees. Conclusions: In this study a method for semiautomatic angulation and segmentation of the heart for cardiac radioablation according to the American Heart Association Segmented Model is presented and evaluated. Based on our results we believe that the segmentation is reproducible and that it can be used to promote communication between radiation oncology and cardiology, enables cardiology-oriented targeting and permits focused toxicity evaluations.

17.
Int J Radiat Oncol Biol Phys ; 112(1): 212-221, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34419566

RESUMEN

PURPOSE: Late radiation toxicity is a major dose-limiting factor in curative cancer radiation therapy. Previous studies identified several risk factors for late radiation toxicity, including both dose-volume factors and genetic predisposition. Herein, we investigated the contribution of genetic predisposition, particularly compared with dose-volume factors, to the risk of late radiation toxicity in patients treated with highly conformal radiation therapy. METHODS AND MATERIALS: We included 179 patients with prostate cancer who underwent treatment with curative external beam radiation therapy between 2009 and 2013. Toxicity was graded according to the Common Terminology Criteria for Adverse Events version 4.0. Transcriptional responsiveness of homologous recombination repair genes and γ-H2AX foci decay ratios (FDRs) were determined in ex vivo irradiated lymphocytes in a previous analysis. Dose-volume parameters were retrieved by delineating the organs at risk (OARs) on CT planning images. Associations between risk factors and grade ≥2 urinary and bowel late radiation toxicities were assessed using univariable and multivariable logistic regression analyses. The analyses were performed using the highest toxicity grade recorded during the follow-up per patient. RESULTS: The median follow-up period was 31 months. One hundred and one patients (56%) developed grade ≥2 late radiation toxicity. Cumulative rates for urinary and bowel grade ≥2 late toxicities were 46% and 17%, respectively. In the multivariable analysis, factors significantly associated with grade ≥2 late toxicity were transurethral resection of the prostate (P = .013), γ-H2AX FDR <3.41 (P = .008), and rectum V70 >11.52% (P = .017). CONCLUSIONS: Our results suggest that impaired DNA double-strand break repair in lymphocytes, as quantified by γ-H2AX FDR, is the most critical determining factor of late radiation toxicity. The limited influence of dose-volume parameters could be due to the use of increasingly conformal techniques, leading to improved dose-volume parameters of the organs at risk.


Asunto(s)
Neoplasias de la Próstata , Traumatismos por Radiación , Radioterapia Conformacional , Resección Transuretral de la Próstata , Humanos , Masculino , Estudios Prospectivos , Neoplasias de la Próstata/genética , Traumatismos por Radiación/etiología , Dosificación Radioterapéutica , Radioterapia Conformacional/efectos adversos , Radioterapia Conformacional/métodos , Recto , Resección Transuretral de la Próstata/efectos adversos
18.
Radiat Oncol ; 16(1): 136, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301300

RESUMEN

BACKGROUND: Online adaptive radiotherapy has the potential to reduce toxicity for patients treated for rectal cancer because smaller planning target volumes (PTV) margins around the entire clinical target volume (CTV) are required. The aim of this study is to describe the first clinical experience of a Conebeam CT (CBCT)-based online adaptive workflow for rectal cancer, evaluating timing of different steps in the workflow, plan quality, target coverage and patient compliance. METHODS: Twelve consecutive patients eligible for 5 × 5 Gy pre-operative radiotherapy were treated on a ring-based linear accelerator with a multidisciplinary team present at the treatment machine for each fraction. The accelerator is operated using an integrated software platform for both treatment planning and delivery. In all directions for all CTVs a PTV margin of 5 mm was used, except for the cranial/caudal borders of the total CTV where a margin of 8 mm was applied. A reference plan was generated based on a single planning CT. After aligning the patient the online adaptive procedure started with acquisition of a CBCT. The planning CT scan was registered to the CBCT using deformable registration and a synthetic CT scan was generated. With the support of artificial intelligence, structure guided deformation and the synthetic CT scan contours were adapted by the system to match the anatomy on the CBCT. If necessary, these contours were adjusted before a new plan was generated. A second and third CBCT were acquired to validate the new plan with respect to CTV coverage just before and after treatment delivery, respectively. Treatment was delivered using volumetric modulated arc treatment (VMAT). All steps in this process were defined and timed. RESULTS: On average the timeslot needed at the treatment machine was 34 min. The process of acquiring a CBCT, evaluating and adjusting the contours, creating the new plan and verifying the CTV on the CBCT scan took on average 20 min. Including delivery and post treatment verification this was 26 min. Manual adjustments of the target volumes were necessary in 50% of fractions. Plan quality, target coverage and patient compliance were excellent. CONCLUSIONS: First clinical experience with CBCT-based online adaptive radiotherapy shows it is feasible for rectal cancer. Trial registration Medical Research Involving Human Subjects Act (WMO) does not apply to this study and was retrospectively approved by the Medical Ethics review Committee of the Academic Medical Center (W21_087 # 21.097; Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, The Netherlands).


Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Terapia Neoadyuvante , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Neoplasias del Recto/radioterapia , Anciano , Anciano de 80 o más Años , Inteligencia Artificial , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Órganos en Riesgo/efectos de la radiación , Pronóstico , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Neoplasias del Recto/tratamiento farmacológico , Neoplasias del Recto/patología , Estudios Retrospectivos
19.
Med Phys ; 48(6): 3109-3119, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33738805

RESUMEN

PURPOSE: Magnetic resonance imaging (MRI) is increasingly used in radiation oncology for target delineation and radiotherapy treatment planning, for example, in patients with gynecological cancers. As a consequence of pelvic radiotherapy, a part of the bowel is irradiated, yielding risk of bowel toxicity. Existing dose-effect models predicting bowel toxicity are inconclusive and bowel motion might be an important confounding factor. The exact motion of the bowel and dosimetric effects of its motion are yet uncharted territories in radiotherapy. In diagnostic radiology methods on the acquisition of dynamic MRI sequences were developed for bowel motility visualization and quantification. Our study aim was to develop an imaging technique based on three-dimensional (3D) cine-MRI to visualize and quantify bowel motion and demonstrate it in a cohort of gynecological cancer patients. METHODS: We developed an MRI acquisition suitable for 3D bowel motion quantification, namely a balanced turbo field echo sequence (TE = 1.39 ms, TR = 2.8 ms), acquiring images in 3.7 s (dynamic) with a 1.25 × 1.25 × 2.5 mm3 resolution, yielding a field of view of 200 × 200 × 125 mm3 . These MRI bowel motion sequences were acquired in 22 gynecological patients. During a 10-min scan, 160 dynamics were acquired. Subsequent dynamics were deformably registered using a B-spline transformation model, resulting in 159 3D deformation vector fields (DVFs) per MRI set. From the 159 DVFs, the average vector length was calculated per voxel to generate bowel motion maps. Quality assurance was performed on all 159 DVFs per MRI, using the Jacobian Determinant and the Harmonic Energy as deformable image registration error metrics. In order to quantify bowel motion, we introduced the concept of cumulative motion-volume histogram (MVH) of the bowel bag volume. Finally, interpatient variation of bowel motion was analyzed using the MVH parameters M10%, M50%, and M90%. The M10%/M50%/M90% represents the minimum bowel motion per frame of 10%/50%/90% of the bowel bag volume. RESULTS: The motion maps resulted in a visualization of areas with small and large movements within the bowel bag. After applying quality assurance, the M10%, M50%, and M90% were 4.4 (range 2.2-7.6) mm, 2.2 (range 0.9-4.1) mm, and 0.5 (range 0.2-1.4) mm per frame, on average over all patients, respectively. CONCLUSION: We have developed a method to visualize and quantify 3D bowel motion with the use of bowel motion specific MRI sequences in 22 gynecological cancer patients. This 3D cine-MRI-based quantification tool and the concept of MVHs can be used in further studies to determine the effect of radiotherapy on bowel motion and to find the relation with dose effects to the small bowel. In addition, the developed technique can be a very interesting application for bowel motility assessment in diagnostic radiology.


Asunto(s)
Neoplasias , Respiración , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Imagen por Resonancia Cinemagnética
20.
Int J Radiat Oncol Biol Phys ; 103(2): 491-502, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30253234

RESUMEN

PURPOSE: Both midposition (MidP) and internal target volume (ITV) strategies can take the respiration-induced target motion into account. This study aimed to compare these 2 strategies in terms of clinical target volume (CTV) coverage and dose to organs at risk (OARs) for esophageal cancer radiation therapy (RT). METHODS AND MATERIALS: Fifteen patients with esophageal cancer were included retrospectively for neoadjuvant RT planning. Per patient, a 10-phase, 4-dimensional (4D) computed tomography (CT) scan (4D-CT) was acquired with CTV and OARs delineated on the 20% phase. The MidP-CT scan was reconstructed based on deformable image registration between the 20% phase and the other 9 phases; thereby, the CTV and OARs delineations were propagated and an ITV was constructed. Both MidP and ITV strategies were used for treatment planning, yielding the planned dose. Next, these plans were applied to the 10-phase 4D-CT to calculate the dose distribution for each phase of the 4D-CT. On the basis of the deformable image registration, these calculated dose distributions were warped and averaged to yield the accumulated 4D dose. Subsequently, we compared, in terms of CTV coverage and dose to OARs, the planned dose with the accumulated 4D dose and the MidP strategy with the ITV strategy. RESULTS: The differences between the planned dose and the accumulated 4D dose were limited and clinically irrelevant. In 14 patients, both MidP and ITV strategies showed V95% > 98% for the CTV. Compared with the ITV strategy, the MidP strategy showed a significant reduction of approximately 10% in the dose-volume histogram parameters for the lungs, heart, and liver (P < .001, Wilcoxon signed-rank test). CONCLUSIONS: Compared with the ITV strategy, the MidP strategy in treatment planning can lead to a reduction of approximately 10% in the dose to OARs, with an adequate CTV coverage for esophageal cancer RT.


Asunto(s)
Neoplasias Esofágicas/radioterapia , Neoplasias Pulmonares/radioterapia , Radiometría/métodos , Radioterapia/métodos , Anciano , Anciano de 80 o más Años , Femenino , Tomografía Computarizada Cuatridimensional/métodos , Humanos , Masculino , Persona de Mediana Edad , Movimiento (Física) , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Adyuvante/métodos , Radioterapia de Intensidad Modulada/métodos , Respiración , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA