Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 500(7461): 175-81, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23925240

RESUMEN

Animal behaviour arises from computations in neuronal circuits, but our understanding of these computations has been frustrated by the lack of detailed synaptic connection maps, or connectomes. For example, despite intensive investigations over half a century, the neuronal implementation of local motion detection in the insect visual system remains elusive. Here we develop a semi-automated pipeline using electron microscopy to reconstruct a connectome, containing 379 neurons and 8,637 chemical synaptic contacts, within the Drosophila optic medulla. By matching reconstructed neurons to examples from light microscopy, we assigned neurons to cell types and assembled a connectome of the repeating module of the medulla. Within this module, we identified cell types constituting a motion detection circuit, and showed that the connections onto individual motion-sensitive neurons in this circuit were consistent with their direction selectivity. Our results identify cellular targets for future functional investigations, and demonstrate that connectomes can provide key insights into neuronal computations.


Asunto(s)
Conectoma , Drosophila/fisiología , Modelos Biológicos , Percepción de Movimiento/fisiología , Vías Visuales/fisiología , Animales , Femenino , Vías Visuales/citología
2.
IEEE Trans Med Imaging ; 32(12): 2179-88, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23925366

RESUMEN

A central problem in neuroscience is reconstructing neuronal circuits on the synapse level. Due to a wide range of scales in brain architecture such reconstruction requires imaging that is both high-resolution and high-throughput. Existing electron microscopy (EM) techniques possess required resolution in the lateral plane and either high-throughput or high depth resolution but not both. Here, we exploit recent advances in unsupervised learning and signal processing to obtain high depth-resolution EM images computationally without sacrificing throughput. First, we show that the brain tissue can be represented as a sparse linear combination of localized basis functions that are learned using high-resolution datasets. We then develop compressive sensing-inspired techniques that can reconstruct the brain tissue from very few (typically five) tomographic views of each section. This enables tracing of neuronal processes and, hence, high throughput reconstruction of neural circuits on the level of individual synapses.

3.
Curr Biol ; 21(23): 2000-5, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22119527

RESUMEN

Wiring economy has successfully explained the individual placement of neurons in simple nervous systems like that of Caenorhabditis elegans [1-3] and the locations of coarser structures like cortical areas in complex vertebrate brains [4]. However, it remains unclear whether wiring economy can explain the placement of individual neurons in brains larger than that of C. elegans. Indeed, given the greater number of neuronal interconnections in larger brains, simply minimizing the length of connections results in unrealistic configurations, with multiple neurons occupying the same position in space. Avoiding such configurations, or volume exclusion, repels neurons from each other, thus counteracting wiring economy. Here we test whether wiring economy together with volume exclusion can explain the placement of neurons in a module of the Drosophila melanogaster brain known as lamina cartridge [5-13]. We used newly developed techniques for semiautomated reconstruction from serial electron microscopy (EM) [14] to obtain the shapes of neurons, the location of synapses, and the resultant synaptic connectivity. We show that wiring length minimization and volume exclusion together can explain the structure of the lamina microcircuit. Therefore, even in brains larger than that of C. elegans, at least for some circuits, optimization can play an important role in individual neuron placement.


Asunto(s)
Encéfalo/anatomía & histología , Drosophila melanogaster/fisiología , Modelos Neurológicos , Neuronas/fisiología , Sinapsis/ultraestructura , Animales , Microscopía Electrónica/métodos , Vías Nerviosas/fisiología , Neuronas/citología , Sinapsis/fisiología
4.
Curr Opin Neurobiol ; 20(5): 667-75, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20833533

RESUMEN

Reconstructing neuronal circuits at the level of synapses is a central problem in neuroscience, and the focus of the nascent field of connectomics. Previously used to reconstruct the C. elegans wiring diagram, serial-section transmission electron microscopy (ssTEM) is a proven technique for the task. However, to reconstruct more complex circuits, ssTEM will require the automation of image processing. We review progress in the processing of electron microscopy images and, in particular, a semi-automated reconstruction pipeline deployed at Janelia Farm. Drosophila circuits underlying identified behaviors are being reconstructed in the pipeline with the goal of generating a complete Drosophila connectome.


Asunto(s)
Citometría de Imagen/tendencias , Microscopía Electrónica/tendencias , Red Nerviosa/ultraestructura , Neurobiología/tendencias , Neuronas/ultraestructura , Reconocimiento de Normas Patrones Automatizadas/tendencias , Animales , Humanos , Citometría de Imagen/instrumentación , Citometría de Imagen/métodos , Microscopía Electrónica/instrumentación , Microscopía Electrónica/métodos , Neurobiología/instrumentación , Neurobiología/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA