Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Langmuir ; 39(4): 1482-1494, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36651862

RESUMEN

ß-Glucosidase (BG) catalyzes the hydrolysis of cellobiose to glucose, a substrate for fermentation to produce the carbon-neutral fuel bioethanol. Enzyme thermal stability and reusability can be improved through immobilization onto insoluble supports. Moreover, nanoscaled matrixes allow for preserving high reaction rates. In this work, BG was physically immobilized onto wrinkled SiO2 nanoparticles (WSNs). The adsorption procedure was tuned by varying the BG:WSNs weight ratio to achieve the maximum controllability and maximize the yield of immobilization, while different times of immobilization were monitored. Results show that a BG:WSNs ratio equal to 1:6 wt/wt provides for the highest colloidal stability, whereas an immobilization time of 24 h results in the highest enzyme loading (135 mg/g of support) corresponding to 80% yield of immobilization. An enzyme corona is formed in 2 h, which gradually disappears as the protein diffuses within the pores. The adsorption into the silica structure causes little change in the protein secondary structure. Furthermore, supported enzyme exhibits a remarkable gain in thermal stability, retaining complete folding up to 90 °C. Catalytic tests assessed that immobilized BG achieves 100% cellobiose conversion. The improved adsorption protocol provides simultaneously high glucose production, enhanced yield of immobilization, and good reusability, resulting in considerable reduction of enzyme waste in the immobilization stage.


Asunto(s)
Enzimas Inmovilizadas , Nanopartículas , Adsorción , beta-Glucosidasa/metabolismo , Celobiosa , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Glucosa , Concentración de Iones de Hidrógeno , Dióxido de Silicio/química , Temperatura , Biocatálisis
2.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768327

RESUMEN

The existing literature survey reports rare and conflicting studies on the effect of the preparation method of metal-based semiconductor photocatalysts on structural/morphological features, electronic properties, and kinetics regulating the photocatalytic H2 generation reaction. In this investigation, we compare the different copper/titania-based photocatalysts for H2 generation synthesized via distinct methods (i.e., photodeposition and impregnation). Our study aims to establish a stringent correlation between physicochemical/electronic properties and photocatalytic performances for H2 generation based on material characterization and kinetic modeling of the experimental outcomes. Estimating unknown kinetic parameters, such as charge recombination rate and quantum yield, suggests a mechanism regulating charge carrier lifetime depending on copper distribution on the TiO2 surface. We demonstrate that H2 generation photoefficiency recorded over impregnated CuxOy/TiO2 is related to an even distribution of Cu(0)/Cu(I) on TiO2, and the formation of an Ohmic junction concertedly extended charge carrier lifetime and separation. The outcomes of the kinetic analysis and the related modeling investigation underpin photocatalyst physicochemical and electronic properties. Overall, the present study lays the groundwork for the future design of metal-based semiconductor photocatalysts with high photoefficiencies for H2 evolution.

3.
Langmuir ; 38(5): 1821-1832, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35090125

RESUMEN

Metal oxide-organic hybrid semiconductors exhibit specific properties depending not only on their composition but also on the synthesis procedure, and particularly on the functionalization method, determining the interaction between the two components. Surface adsorption is the most common way to prepare organic-modified metal oxides. Here a simple sol-gel route is described as an alternative, finely controlled strategy to synthesize titanium oxide-based materials containing organic molecules coordinated to the metal. The effect of the molecular structure of the ligands on the surface properties of the hybrids is studied using three enediols able to form charge transfer complexes: catechol, dopamine, and ascorbic acid. For each system, the process conditions driving the transition from the sol to chemical, physical, or particulate gels are explored. The structural, optical, and photoelectrochemical characterization of the amorphous hybrid materials shows analogies and differences related to the organic component. In particular, electron paramagnetic resonance (EPR) spectroscopy at room temperature reveals the presence of organic radical species with different evolution and stability, and photocurrent measurements prove the effective photosensitization of TiO2 in the visible range induced by interfacial ligand-to-metal charge transfer.

4.
Biomacromolecules ; 23(1): 443-453, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34936338

RESUMEN

Exploring the chance to convert biowaste into a valuable resource, this study tests the potential role of humic acids (HA), a class of multifunctional compounds obtained by oxidative decomposition of biomass, as physical agents to improve gelatin's mechanical and thermal properties. To this purpose, gelatin-HA aqueous samples were prepared at increasing HA content. HA/gelatin concentrations changed in the range 2.67-26.67 (wt/wt)%. Multiple techniques were employed to assess the influence of HA content on the gel properties and to unveil the underlying mechanisms. HAs increased gel strength up to a concentration of 13.33 (wt/wt)% and led to a weaker gel at higher concentrations. FT-IR and DSC results proved that HAs can establish noncovalent interactions through H-bonding with gelatin. Coagulation phenomena occur because of HA-gelatin interactions, and at concentrations greater than 13.33 (wt/wt)%, HAs established preferential bonds with water molecules, preventing them from coordinating with gelatin chains. These features were accompanied by a change in the secondary structure of gelatin, which lost the triple helix structure and exhibited an increase in the random coil conformation. Besides, higher HA weight content caused swelling phenomena due to HA water absorption, contributing to a weaker gel. The current findings may be useful to enable a better control of gelatin structures modified with composted biowaste, extending their exploitation for a large set of technological applications.


Asunto(s)
Gelatina , Hidrogeles , Gelatina/química , Sustancias Húmicas , Hidrogeles/química , Espectroscopía Infrarroja por Transformada de Fourier , Agua
5.
Int J Mol Sci ; 23(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35563535

RESUMEN

We review processes by which different sounds, such as meditation music, mantra, kindness, or hatred expressions, and noises induce responses from cells and their components. We define 'good' or 'bad' sounds as those enhancing or inhibiting the cell's biological activity, respectively. It is highlighted that the cellular dynamics results in a coherent organization with the formation of ordered patterns due to long-range correlations among the system constituents. Due to coherence, in the framework of quantum field theory, extended domains become independent of quantum fluctuations. Non-dissipative energy transfer on macromolecule chains is briefly discussed. Observed fractal features are analyzed by the fast Fourier transform and a linear relationship between logarithms of conjugate variables is observed. The fractal relation to the generation of forms (morphogenesis) and to the transition from form to form (metamorphosis) is commented. The review is also motivated by the suggestions coming from the cells' responses, which show their ability to move from the syntactic level of the sound component frequencies to the semantic level of their collective envelope. The process by which sounds are selected to be good or bad sounds sheds some light on the problem of the construction of languages.


Asunto(s)
Simulación de Dinámica Molecular , Teoría Cuántica , Transferencia de Energía , Humanos , Ruido , Sonido
6.
Langmuir ; 37(28): 8508-8516, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34213914

RESUMEN

The bacterial cytoplasmic membrane is the innermost bacterial membrane and is mainly composed of three different phospholipid species, i.e., phosphoethanolamine (PE), phosphoglycerol (PG), and cardiolipin (CL). In particular, PG and CL are responsible for the negative charge of the membrane and are often the targets of cationic antimicrobial agents. The growing resistance of bacteria toward the available antibiotics requires the development of new and more efficient antibacterial drugs. In this context, studying the physicochemical properties of the bacterial cytoplasmic membrane is pivotal for understanding drug-membrane interactions at the molecular level as well as for designing drug-testing platforms. Here, we discuss the preparation and characterization of PE/PG/CL vesicle suspensions, which contain all of the main lipid components of the bacterial cytoplasmic membrane. The vesicle suspensions were characterized by means of small-angle neutron scattering, dynamic light scattering, and electron paramagnetic spectroscopy. By combining solution scattering and spectroscopy techniques, we propose a detailed description of the impact of different CL concentrations on the structure and dynamics of the PE/PG bilayer. CL induces the formation of thicker bilayers, which exhibit higher curvature and are overall more fluid. The experimental results contribute to shed light on the structure and dynamics of relevant model systems of the bacterial cytoplasmic membrane.


Asunto(s)
Cardiolipinas , Membrana Dobles de Lípidos , Bacterias , Membrana Celular , Fosfatidiletanolaminas
7.
Environ Res ; 193: 110562, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33271143

RESUMEN

Humic acids (HAs) provide an important bio-source for redox-active materials. Their functional chemical groups are responsible for several properties, such as metal ion chelating activity, adsorption ability towards small molecules and antibacterial activity, through reactive oxygen species (ROS) generation. However, the poor selectivity and instability of HAs in solution hinder their application. A promising strategy for overcoming these disadvantages is conjugation with an inorganic phase, which leads to more stable hybrid nanomaterials with tuneable functionalities. In this study, we demonstrate that hybrid humic acid/titanium dioxide nanostructured materials that are prepared via a versatile in situ hydrothermal strategy display promising antibacterial activity against various pathogens and behave as selective sequestering agents of amoxicillin and tetracycline antibiotics from wastewater. A physicochemical investigation in which a combination of techniques were utilized, which included TEM, BET, 13C-CPMAS-NMR, EPR, DLS and SANS, shed light on the structure-property-function relationships of the nanohybrids. The proposed approach traces a technological path for the exploitation of organic biowaste in the design at the molecular scale of multifunctional nanomaterials, which is useful for addressing environmental and health problems that are related to water contamination by antibiotics and pathogens.


Asunto(s)
Sustancias Húmicas , Nanoestructuras , Antibacterianos/farmacología , Sustancias Húmicas/análisis , Titanio , Aguas Residuales
8.
Entropy (Basel) ; 23(4)2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920144

RESUMEN

BACKGROUND AND AIM: Mental stress represents a pivotal factor in cardiovascular diseases. The mechanism by which stress produces its deleterious ischemic effects is still under study but some of the most explored pathways are inflammation, endothelial function and balancing of the thrombotic state. In this scenario, von Willebrand factor (vWF) is a plasma glycoprotein best known for its crucial hemostatic role, also acting as key regulatory element of inflammation, being released by the activated vascular endothelium. Antistress techniques seem to be able to slow down inflammation. As we have recently verified how the practice of the Relaxation Response (RR), which counteracts psychological stress, causes favorable changes in some inflammatory genes' expressions, neurotransmitters, hormones, cytokines and inflammatory circulating microRNAs with coronary endothelial function improvement, we aimed to verify a possible change even in serum levels of vWF. Experimental procedure: We measured vWF multimers and the total protein carbonyl contents in the sera of 90 patients with ischemic heart disease (and 30 healthy controls) immediately before and after an RR session, three times (baseline, 6 months, 12 months), during a one-year follow-up study. RESULTS: According to our data, large vWF multimers decrease during the RR, as does the plasma total carbonyl content. CONCLUSION: vWF levels seem to vary rapidly between anti-inflammatory and antithrombotic behaviors dependent on psychological activity, leading to relaxation and also possibly changes in its quaternary structure.

9.
Langmuir ; 36(30): 8777-8791, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32575987

RESUMEN

Nanoparticles (NPs) are increasingly exploited as diagnostic and therapeutic devices in medicine. Among them, superparamagnetic nanoparticles (SPIONs) represent very promising tools for magnetic resonance imaging, local heaters for hyperthermia, and nanoplatforms for multimodal imaging and theranostics. However, the use of NPs, including SPIONs, in medicine presents several issues: first, the encounter with the biological world and proteins in particular. Indeed, nanoparticles can suffer from protein adsorption, which can affect NP functionality and biocompatibility. In this respect, we have investigated the interaction of small SPIONs covered by an amphiphilic double layer of oleic acid/oleylamine and 1-octadecanoyl-sn-glycero-3-phosphocholine with two abundant human plasma proteins, human serum albumin (HSA) and human transferrin. By means of spectroscopic and scattering techniques, we analyzed the effect of SPIONs on protein structure and the binding affinities, and only found strong binding in the case of HSA. In no case did SPIONs alter the protein structure significantly. We structurally characterized HSA/SPIONs complexes by means of light and neutron scattering, highlighting the formation of a monolayer of protein molecules on the NP surface. Their interaction with lipid bilayers mimicking biological membranes was investigated by means of neutron reflectivity. We show that HSA/SPIONs do not affect lipid bilayer features and could be further exploited as a nanoplatform for future applications. Overall, our findings point toward a high biocompatibility of phosphocholine-decorated SPIONs and support their use in nanomedicine.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Albúminas , Proteínas Sanguíneas , Humanos , Nanopartículas de Magnetita/toxicidad , Nanomedicina , Fosforilcolina
10.
Soft Matter ; 16(46): 10425-10438, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33165495

RESUMEN

Polyunsaturated omega-3 fatty acid docosahexaenoic acid (DHA) is found in very high concentrations in a few peculiar tissues, suggesting that it must have a specialized role. DHA was proposed to affect the function of the cell membrane and related proteins through an indirect mechanism of action, based on the DHA-phospholipid effects on the lipid bilayer structure. In this respect, most studies have focused on its influence on lipid-rafts, somehow neglecting the analysis of effects on liquid disordered phases that constitute most of the cell membranes, by reporting in these cases only a general fluidifying effect. In this study, by combining neutron reflectivity, cryo-transmission electron microscopy, small angle neutron scattering, dynamic light scattering and electron paramagnetic resonance spectroscopy, we characterize liquid disordered bilayers formed by the naturally abundant 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and different contents of a di-DHA glycero-phosphocholine, 22:6-22:6PC, from both a molecular/microscopic and supramolecular/mesoscopic viewpoint. We show that, below a threshold concentration of about 40% molar percent, incorporation of 22:6-22:6PC in the membrane increases the lipid dynamics slightly but sufficiently to promote the membrane deformation and increase of multilamellarity. Notably, beyond this threshold, 22:6-22:6PC disfavours the formation of lamellar phases, leading to a phase separation consisting mostly of small spherical particles that coexist with a minority portion of a lipid blob with water-filled cavities. Concurrently, from a molecular viewpoint, the polyunsaturated acyl chains tend to fold and expose the termini to the aqueous medium. We propose that this peculiar tendency is a key feature of the DHA-phospholipids making them able to modulate the local morphology of biomembranes.


Asunto(s)
Ácidos Grasos Omega-3 , Membrana Dobles de Lípidos , Ácidos Docosahexaenoicos , Microdominios de Membrana , Fosfatidilcolinas , Fosfolípidos
11.
J Integr Neurosci ; 19(4): 701-709, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33378844

RESUMEN

This is a perspective on some theoretical studies obtained in the framework of the dissipative quantum model of brain. The formation of long range neuronal correlations is described in terms of quantum field theory mechanisms operating in systems with a huge number of degrees of freedom. Memory states are constructed through the condensation in the lowest energy state of quanta associated to the long range correlations. Many properties derived from such a modeling are discussed, also in relation with classical/quantum modeling interplay. The brain flexibility in responding to incoming inputs producing novel correlation patterns is attributed to the chaotic character of trajectories or paths through the memory states. A relevant role in the model is played by the fact that the brain is permanently open to its environment. The brain/mind activity is thus described in the formalism of dissipative systems, also accounting for the formation of the meanings of the information carried by the perceptual experiences. A recent novel description of criticality in brain activity during dreaming, meditation and non-ordinary brain states is briefly mentioned. In the model, it is proposed that consciousness finds its origin in the permanent dialog or interaction of the brain with its environment. Although a long way has been done, much work is still necessary to understand the extraordinary functional properties of brain.


Asunto(s)
Encéfalo/fisiología , Estado de Conciencia/fisiología , Memoria/fisiología , Modelos Teóricos , Teoría Cuántica , Humanos
12.
Int J Mol Sci ; 22(1)2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33375749

RESUMEN

Mechanical vibrations seem to affect the behaviour of different cell types and the functions of different organs. Pressure waves, including acoustic waves (sounds), could affect cytoskeletal molecules via coherent changes in their spatial organization and mechano-transduction signalling. We analyzed the sounds spectra and their fractal features. Cardiac muscle HL1 cells were exposed to different sounds, were stained for cytoskeletal markers (phalloidin, beta-actin, alpha-tubulin, alpha-actinin-1), and studied with multifractal analysis (using FracLac for ImageJ). A single cell was live-imaged and its dynamic contractility changes in response to each different sound were analysed (using Musclemotion for ImageJ). Different sound stimuli seem to influence the contractility and the spatial organization of HL1 cells, resulting in a different localization and fluorescence emission of cytoskeletal proteins. Since the cellular behaviour seems to correlate with the fractal structure of the sound used, we speculate that it can influence the cells by virtue of the different sound waves' geometric properties that we have photographed and filmed. A theoretical physical model is proposed to explain our results, based on the coherent molecular dynamics. We stress the role of the systemic view in the understanding of the biological activity.


Asunto(s)
Estimulación Acústica , Modelos Teóricos , Sonido , Biomarcadores , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Mecanotransducción Celular , Microscopía Confocal , Proyectos Piloto , Tubulina (Proteína)/metabolismo
13.
Entropy (Basel) ; 22(8)2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-33286589

RESUMEN

Stress appears to be the basis of many diseases, especially myocardial infarction. Events are not objectively "stressful" but what is central is how the individual structures the experience he is facing: the thoughts he produces about an event put him under stress. This cognitive process could be revealed by language (words and structure). We followed 90 patients with ischemic heart disease and 30 healthy volunteers, after having taught them the Relaxation Response (RR) as part of a 4-day Rational-Emotional-Education intervention. We analyzed with the Linguistic Inquiry and Word Count software the words that the subjects used across the study following the progression of blood galectin-3 (inflammation marker) and malondialdehyde (oxidative stress marker). During the follow-up, we confirmed an acute and chronic decrease in the markers of inflammation and oxidative stress already highlighted in our previous studies together with a significant change in the use of language by the subjects of the RR groups. Our results and the precise design of our study would seem to suggest the existence of an intimate relationship and regulatory action by cognitive processes (recognizable by the type of language used) on some molecular processes in the human body.

14.
Phys Chem Chem Phys ; 21(34): 18541-18550, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31397450

RESUMEN

In this work we expand on findings previously reported [Wexler et al., Phys. Chem. Chem. Phys., 2016, 18, 16281] on the experimental observation of a phase transition in a hydrogen bonded liquid manifesting in long range dipole-dipole interactions. The studied system, liquid water stressed by an electric field, exhibits collective oscillations brought about through spontaneous breakdown of symmetry. Raman spectroscopy identifies the primary excitation of the emergent phase as transverse optically active phonon-like sidebands that appear on the hydrogen bonded asymmetric stretch mode. The phase transition is observed throughout the entire volume of liquid. The system also exhibits a self-similarity relation between the scattered Raman intensity and the electric field strength which further supports the conclusion that collective behavior persists against thermal disruption. The experimental findings are discussed in terms of a quantum field theory for macroscopic quantum systems.

15.
Environ Res ; 165: 11-18, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29655038

RESUMEN

BACKGROUND: Reactive oxygen species (ROS) in biological tissues of elected biosentinels represent an optimal biomarker for eco-monitoring of polluted areas. Electron spin resonance (ESR) is the most definitive method for detecting, quantifying and possibly identifying radicals in complex systems. OBJECTIVE: A non-invasive method for monitoring polluted areas by the quantitative determination of ROS in frog skin biopsy is presented. METHODS: We assessed by ESR spectroscopy the ROS level in adult male of Pelophylax bergeri, specie not a risk of extinction, collected from the polluted Sarno River (SA, Italy) basin. The spin-trap ESR method was validated by immunohistochemical analysis of the well-assessed pollution biomarkers cytochrome P450 aromatase 1A (CYP1A) and glutathione S-transferase (GST), and by determining the poly(ADPribose) polymerase (PARP) and GST enzymatic activity. RESULTS: ROS concentration in skin samples from frogs collected in the polluted area is significantly higher than that determined for the unpolluted reference area. Immunohistochemical analysis of CYP1A and GST supported the reliability of our approach, even in the absence of evident morphological and ultrastructural differences. PARP activity assay, connected to possible oxidative DNA damage, and the detoxification index by GST enzymatic assay give statistically significant evidence that higher levels of ROS are associated to alterations of the different biomarkers. CONCLUSIONS: ROS concentration, measured by ESR on isolated frog skin, through the presented non-lethal method, is a reliable biomarker for toxicity screening and represents a useful basic datum for future modelling studies on environmental monitoring and biodiversity loss prevention.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón , Monitoreo del Ambiente , Ranidae , Especies Reactivas de Oxígeno , Piel , Animales , Monitoreo del Ambiente/métodos , Italia , Masculino , Especies Reactivas de Oxígeno/análisis , Reproducibilidad de los Resultados , Piel/química
16.
Biochim Biophys Acta ; 1858(8): 1904-13, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27179640

RESUMEN

The effect of the 665-683 fragment of the HIV fusion glycoprotein 41, corresponding to the MPER domain of the protein and named gp41MPER, on the microscopic structure and mesoscopic arrangement of palmitoyl oleoyl phosphatidylcholine (POPC) and POPC/sphingomyelin (SM)/cholesterol (CHOL) lipid bilayers is analyzed. The microscopic structuring of the bilayers has been studied by Electron Spin Resonance (ESR) spectroscopy, using glycerophosphocholines spin-labelled in different positions along the acyl chain. Transitions of the bilayer liquid crystalline state have been also monitored by Differential Scanning Calorimetry (DSC). Changes of the bilayers morphology have been studied by determining the dimension of the liposomes through Dynamic Light Scattering (DLS) measurements. The results converge in showing that the sample preparation procedure, the bilayer composition and the peptide/lipid ratio critically tune the lipid response to the peptide/membrane interaction. When gp41MPER is added to preformed liposomes, it positions at the bilayer interface and the lipid perturbation is limited to the more external segments. In contrast, if the peptide is mixed with the lipids during the liposome preparation, it assumes a trans-membrane topology. This happens at all peptide/lipid ratios for fluid POPC bilayers, while in the case of rigid POPC/SM/CHOL membranes a minimum ratio has to be reached, thus suggesting peptide self-aggregation to occur. Peptide insertion results in a dramatic increase of the lipid ordering and bilayer stiffening, which reflect in significant changes in liposome average dimension and distribution. The biological implications of these findings are discussed.


Asunto(s)
Proteína gp41 de Envoltorio del VIH/química , Membrana Dobles de Lípidos/química , Rastreo Diferencial de Calorimetría , Colesterol/química , Dispersión Dinámica de Luz , Espectroscopía de Resonancia por Spin del Electrón , Liposomas/química , Cristales Líquidos , Fluidez de la Membrana , Lípidos de la Membrana/química , Proteínas de la Membrana/química , Fragmentos de Péptidos , Fosfatidilcolinas/química , Dominios Proteicos , Esfingomielinas/química
17.
Biochim Biophys Acta Biomembr ; 1859(12): 2392-2401, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28890186

RESUMEN

An amphiphilic derivative of guanosine, carrying a myristoyl group at the 5'-position and two methoxy(triethylene glycol) appendages at the 2' and 3'-positions (1), endowed with high ionophoric activity, has been here studied in its interaction mode with a model lipid membrane along with its 5'-spin-labelled analogue 2, bearing the 5-doxyl-stearic in lieu of the myristic residue. Electron spin resonance spectra, carried out on the spin-labelled nucleolipid 2 in mixture with a DOPC/DOPG phospholipid bilayer, on one side, and on spin-labelled lipids mixed with 1, on the other, integrated with dynamic light scattering and neutron reflectivity measurements, allowed getting an in-depth picture of the effect of the ionophores on membrane structure, relevant to clarify the ion transport mechanism through lipid bilayers. Particularly, dehydration of lipid headgroups and lowering of both the local polarity and acyl chains order across the bilayer, due to the insertion of the oligo(ethylene glycol) chains in the bilayer hydrophobic core, have been found to be the main effects of the amphiphilic guanosines interaction with the membrane. These results furnish directions to rationally implement future ionophores design.


Asunto(s)
Guanosina/análogos & derivados , Ionóforos/química , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Fosfatidilgliceroles/química , Diseño de Fármacos , Espectroscopía de Resonancia por Spin del Electrón , Guanosina/síntesis química , Interacciones Hidrofóbicas e Hidrofílicas , Ionóforos/síntesis química , Cinética , Luz , Polietilenglicoles/química , Dispersión de Radiación , Marcadores de Spin
18.
J Integr Neurosci ; 16(s1): S85-S98, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29125500

RESUMEN

Average evoked potential data recorded as impulse responses of brains to electric shocks show Bessel-like functional distributions which we analyze in terms of couples of damped/amplified oscillators. This reproduces results obtained in terms of ordinary differential equations (Freeman K-sets) and offers the possibility of a direct connection with the dissipative model of brain in the quantum gauge field theory paradigm. We study the control mechanism by fine tuning the model parameters and the brain property of discriminating between two similar behaviors or perceptions. We suggest that a similar control mechanism may be useful in security communication protocols. Finally, brain activity and mental activity is considered in the light of our results.


Asunto(s)
Encéfalo/fisiología , Potenciales Evocados , Humanos , Procesos Mentales/fisiología , Modelos Teóricos , Teoría Cuántica
19.
Phys Chem Chem Phys ; 18(27): 18441-9, 2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-27338137

RESUMEN

SuperParamagnetic Iron Oxide Nanoparticles (SPIONs) represent a suitable system for several applications especially in nanomedicine. Great efforts have been made to design stable and biocompatible functionalized SPIONs suitable for diagnostics and drug delivery. In particular, zwitterionic-surfactant functionalized SPIONs, obtained through a coating strategy based on hydrophobic interaction, are promising systems for biomedical applications. The size of functionalized SPIONs has emerged as a crucial parameter determining their fate in living organisms. However, not all the proposed functionalization strategies lead to monodispersed systems and SPION clustering often occurs. In this study, we report a systematic investigation on different surfactant-functionalized SPIONs in order to explore the possibility of tuning the particle size by choosing an appropriate amphiphilic molecule. By combining Small-Angle Neutron Scattering (SANS) and Dynamic Light Scattering (DLS) analysis, we have provided a detailed description of the functionalized SPION structure. Furthermore, we have also related the surfactant aggregation properties, i.e. the Critical Micelle Concentration (CMC), to their efficiency in coating the SPION surface. A lack in the formation of a compact shell leads to a clusters formation. On this basis, the present study contributes to furnishing decisive information to define synthetic strategies able to tune functionalized-SPION design.


Asunto(s)
Compuestos Férricos/química , Surfactantes Pulmonares/química , Tensoactivos/química , Sistemas de Liberación de Medicamentos , Dispersión Dinámica de Luz , Micelas , Nanomedicina , Tamaño de la Partícula
20.
Biochim Biophys Acta ; 1838(3): 1010-8, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24369115

RESUMEN

C8, a short peptide characterized by three regularly spaced Trp residues, belongs to the membrane-proximal external functional domains of the feline immunodeficiency virus coat protein gp36. It elicits antiviral activity as a result of blocking cell entry and exhibits membranotropic and fusogenic activities. Membrane-proximal external functional domains of virus coat proteins are potential targets in the development of new anti-HIV drugs that overcome the limitations of the current anti-retroviral therapy. In the present work, we studied the conformation of C8 and its interaction with micellar surfaces using circular dichroism, nuclear magnetic resonance and fluorescence spectroscopy. The experimental data were integrated by molecular dynamics simulations in a micelle-water system. Our data provide insight into the environmental conditions related to the presence of the fusogenic peptide C8 on zwitterionic or negatively charged membranes. The membrane charge modulates the conformational features of C8. A zwitterionic membrane surface induces C8 to assume canonical secondary structures, with hydrophobic interactions between the Trp residues and the phospholipid chains of the micelles. A negatively charged membrane surface favors disordered C8 conformations and unspecific superficial interactions, resulting in membrane destabilization.


Asunto(s)
Antivirales/química , Membrana Celular/química , Microambiente Celular , Fragmentos de Péptidos/química , Proteínas del Envoltorio Viral/química , Animales , Gatos , Dicroismo Circular , Fluorescencia , Humanos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Conformación Proteica , Marcadores de Spin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA