RESUMEN
The definition of molecular and cellular mechanisms contributing to brain ontogenetic trajectories is essential to investigate the evolution of our species. Yet their functional dissection at an appropriate level of granularity remains challenging. Capitalizing on recent efforts that have extensively profiled neural stem cells from the developing human cortex, we develop an integrative computational framework to perform trajectory inference and gene regulatory network reconstruction, (pseudo)time-informed non-negative matrix factorization for learning the dynamics of gene expression programs, and paleogenomic analysis for a higher-resolution mapping of derived regulatory variants in our species in comparison with our closest relatives. We provide evidence for cell type-specific regulation of gene expression programs during indirect neurogenesis. In particular, our analysis uncovers a key role for a cholesterol program in outer radial glia, regulated by zinc-finger transcription factor KLF6. A cartography of the regulatory landscape impacted by Homo sapiens-derived variants reveals signals of selection clustering around regulatory regions associated with GLI3, a well-known regulator of radial glial cell cycle, and impacting KLF6 regulation. Our study contributes to the evidence of significant changes in metabolic pathways in recent human brain evolution.
Asunto(s)
Encéfalo , Colesterol , Células Ependimogliales , Redes Reguladoras de Genes , Humanos , Colesterol/metabolismo , Encéfalo/metabolismo , Células Ependimogliales/metabolismo , Células Ependimogliales/citología , Evolución Biológica , Neurogénesis/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Regulación del Desarrollo de la Expresión Génica , Factor 6 Similar a Kruppel/metabolismo , Factor 6 Similar a Kruppel/genéticaRESUMEN
Autism spectrum disorder (ASD) comprises a large group of neurodevelopmental conditions featuring, over a wide range of severity and combinations, a core set of manifestations (restricted sociality, stereotyped behavior and language impairment) alongside various comorbidities. Common and rare variants in several hundreds of genes and regulatory regions have been implicated in the molecular pathogenesis of ASD along a range of causation evidence strength. Despite significant progress in elucidating the impact of few paradigmatic individual loci, such sheer complexity in the genetic architecture underlying ASD as a whole has hampered the identification of convergent actionable hubs hypothesized to relay between the vastness of risk alleles and the core phenotypes. In turn this has limited the development of strategies that can revert or ameliorate this condition, calling for a systems-level approach to probe the cross-talk of cooperating genes in terms of causal interaction networks in order to make convergences experimentally tractable and reveal their clinical actionability. As a first step in this direction, we have captured from the scientific literature information on the causal links between the genes whose variants have been associated with ASD and the whole human proteome. This information has been annotated in a computer readable format in the SIGNOR database and is made freely available in the resource website. To link this information to cell functions and phenotypes, we have developed graph algorithms that estimate the functional distance of any protein in the SIGNOR causal interactome to phenotypes and pathways. The main novelty of our approach resides in the possibility to explore the mechanistic links connecting the suggested gene-phenotype relations.
Asunto(s)
Trastorno del Espectro Autista , Predisposición Genética a la Enfermedad , Trastornos del Neurodesarrollo , Fenotipo , Humanos , Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad/genética , Trastornos del Neurodesarrollo/genética , Redes Reguladoras de Genes/genética , Trastorno Autístico/genética , Estudios de Asociación Genética/métodos , Proteoma/genéticaRESUMEN
Weaver syndrome (WS), an overgrowth/intellectual disability syndrome (OGID), is caused by pathogenic variants in the histone methyltransferase EZH2, which encodes a core component of the Polycomb repressive complex-2 (PRC2). Using genome-wide DNA methylation (DNAm) data for 187 individuals with OGID and 969 control subjects, we show that pathogenic variants in EZH2 generate a highly specific and sensitive DNAm signature reflecting the phenotype of WS. This signature can be used to distinguish loss-of-function from gain-of-function missense variants and to detect somatic mosaicism. We also show that the signature can accurately classify sequence variants in EED and SUZ12, which encode two other core components of PRC2, and predict the presence of pathogenic variants in undiagnosed individuals with OGID. The discovery of a functionally relevant signature with utility for diagnostic classification of sequence variants in EZH2, EED, and SUZ12 supports the emerging paradigm shift for implementation of DNAm signatures into diagnostics and translational research.
Asunto(s)
Anomalías Múltiples/genética , Hipotiroidismo Congénito/genética , Anomalías Craneofaciales/genética , Metilación de ADN , Proteína Potenciadora del Homólogo Zeste 2/genética , Deformidades Congénitas de la Mano/genética , Discapacidad Intelectual/genética , Mutación , Complejo Represivo Polycomb 2/genética , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Masculino , Mosaicismo , Mutación Missense/genética , Proteínas de Neoplasias , Reproducibilidad de los Resultados , Factores de Transcripción , Adulto JovenRESUMEN
A vast portion of intellectual disability and autism spectrum disorders is genetically caused by mutations in chromatin modulators. These proteins play key roles in development and are also highly expressed in the adult brain. Specifically, the pivotal role of chromatin regulation in transcription has placed enhancers at the core of neurodevelopmental disorders (NDDs) studies, ushering in the coining of the term enhanceropathies. The convergence of these disorders is multilayered, spanning from molecular causes to pathophysiological traits, including extensive overlaps between enhanceropathies and neurocristopathies. The reconstruction of epigenetic circuitries wiring development and underlying cognitive functions has gone hand in hand with the development of tools that increase the sensitivity of identifying regulatory regions and linking enhancers to their target genes. The available models, including loop extrusion and phase separation, have been bringing into relief complementary aspects to interpret gene regulation datasets, reinforcing the idea that enhancers are not all the same and that regulatory regions possess shades of enhancer-ness and promoter-ness. The current limits in enhancer definition, within the emerging broader understanding of chromatin dynamics in time and space, are now on the verge of being transformed by the possibility to interrogate developmentally relevant three-dimensional cellular models at single-cell resolution. Here we discuss the contours of how these technological advances, as well as the epistemic limitations they are set to overcome, may well usher in a change of paradigm for NDDs, moving the quest for convergence from enhancers to the four-dimensional (4D) genome.
Asunto(s)
Encéfalo/fisiopatología , Cromatina/metabolismo , Epigénesis Genética , Trastornos del Neurodesarrollo/genética , Neuronas/metabolismo , Trastorno Autístico/genética , Encéfalo/metabolismo , Cromatina/química , Cognición , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Histonas/química , Histonas/metabolismo , Humanos , Mutación , Neuronas/citología , Organoides/crecimiento & desarrollo , Organoides/metabolismo , Regiones Promotoras GenéticasRESUMEN
Yin and yang 1 (YY1) is a well-known zinc-finger transcription factor with crucial roles in normal development and malignancy. YY1 acts both as a repressor and as an activator of gene expression. We have identified 23 individuals with de novo mutations or deletions of YY1 and phenotypic features that define a syndrome of cognitive impairment, behavioral alterations, intrauterine growth restriction, feeding problems, and various congenital malformations. Our combined clinical and molecular data define "YY1 syndrome" as a haploinsufficiency syndrome. Through immunoprecipitation of YY1-bound chromatin from affected individuals' cells with antibodies recognizing both ends of the protein, we show that YY1 deletions and missense mutations lead to a global loss of YY1 binding with a preferential retention at high-occupancy sites. Finally, we uncover a widespread loss of H3K27 acetylation in particular on the YY1-bound enhancers, underscoring a crucial role for YY1 in enhancer regulation. Collectively, these results define a clinical syndrome caused by haploinsufficiency of YY1 through dysregulation of key transcriptional regulators.
Asunto(s)
Cromatina/metabolismo , Haploinsuficiencia/genética , Discapacidad Intelectual/genética , Transcripción Genética , Factor de Transcripción YY1/genética , Acetilación , Adolescente , Secuencia de Bases , Preescolar , Inmunoprecipitación de Cromatina , Estudios de Cohortes , Elementos de Facilitación Genéticos/genética , Femenino , Ontología de Genes , Haplotipos/genética , Hemicigoto , Histonas/metabolismo , Humanos , Linfocitos/metabolismo , Masculino , Metilación , Modelos Moleculares , Mutación Missense/genética , Unión Proteica/genética , Dominios Proteicos , Factor de Transcripción YY1/químicaRESUMEN
RNA sequencing (RNAseq) has become the method of choice for transcriptome analysis, yet no consensus exists as to the most appropriate pipeline for its analysis, with current benchmarks suffering important limitations. Here, we address these challenges through a rich benchmarking resource harnessing (i) two RNAseq datasets including ERCC ExFold spike-ins; (ii) Nanostring measurements of a panel of 150 genes on the same samples; (iii) a set of internal, genetically-determined controls; (iv) a reanalysis of the SEQC dataset; and (v) a focus on relative quantification (i.e. across-samples). We use this resource to compare different approaches to each step of RNAseq analysis, from alignment to differential expression testing. We show that methods providing the best absolute quantification do not necessarily provide good relative quantification across samples, that count-based methods are superior for gene-level relative quantification, and that the new generation of pseudo-alignment-based software performs as well as established methods, at a fraction of the computing time. We also assess the impact of library type and size on quantification and differential expression analysis. Finally, we have created a R package and a web platform to enable the simple and streamlined application of this resource to the benchmarking of future methods.
Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Simulación por Computador , Dosificación de Gen , Regulación de la Expresión Génica , Biblioteca de Genes , Reproducibilidad de los Resultados , Transcriptoma , Navegador WebRESUMEN
[NiFe]-hydrogenases catalyse the relevant H2 â 2H+ + 2e- reaction. Aerobic oxidation or anaerobic oxidation of this enzyme yields two inactive states called Ni-A and Ni-B. These states differ for the reactivation kinetics which are slower for Ni-A than Ni-B. While there is a general consensus on the structure of Ni-B, the nature of Ni-A is still controversial. Indeed, several crystallographic structures assigned to the Ni-A state have been proposed, which, however, differ for the nature of the bridging ligand and for the presence of modified cysteine residues. The spectroscopic characterization of Ni-A has been of little help due to small differences of calculated spectroscopic parameters, which does not allow to discriminate among the various forms proposed for Ni-A. Here, we report a DFT investigation on the nature of the Ni-A state, based on systematic explorations of conformational and configurational space relying on accurate energy calculations, and on comparisons of theoretical geometries with the X-ray structures currently available. The results presented in this work show that, among all plausible isomers featuring various protonation patterns and oxygenic ligands, the one corresponding to the crystallographic structure recently reported by Volbeda et al. (J Biol Inorg Chem 20:11-22, 19)-featuring a bridging hydroxide ligand and the sulphur atom of Cys64 oxidized to bridging sulfenate-is the most stable. However, isomers with cysteine residues oxidized to terminal sulfenate are very close in energy, and modifications in the network of H-bond with neighbouring residues may alter the stability order of such species.
Asunto(s)
Hidrogenasas/química , Hidrogenasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Cisteína , Modelos Moleculares , Oxidación-Reducción , Oxígeno/metabolismo , Teoría CuánticaRESUMEN
The study reports a flexible structure-based approach aimed at identifying binding sites within target proteins starting from a well-defined reference binding site. The method, named SPILLO potential binding sites searcher (SPILLO-PBSS), includes a suitably designed tolerance which allows an efficient recognition of the potential binding sites regardless of both involved residues and protein conformation. Hence, the proposed method overcomes the rigidity which affects the available approaches and which prevents a proper analysis of distorted binding sites. We apply SPILLO-PBSS to several test cases, including the search for the guanosine diphosphate binding site in distorted H-Ras proteins and the identification of acetylcholine binding proteins from among a library of heterogeneous resolved proteins. Tests are also performed to compare SPILLO-PBSS with other related and available methods. The encouraging results confirm the notable potentialities of this approach and lay the foundation for its use to analyze and predict target proteins on a proteome-wide scale.
Asunto(s)
Acetilcolina/química , Biología Computacional , Guanosina Difosfato/química , Proteínas/química , Programas Informáticos , Algoritmos , Sitios de Unión , Modelos Moleculares , Conformación Proteica , ProteomaRESUMEN
Heterozygous de novo mutations in the Activity-Dependent Neuroprotective Homeobox (ADNP) gene underlie Helsmoortel-Van der Aa syndrome (HVDAS). Most of these mutations are situated in the last exon and we previously demonstrated escape from nonsense-mediated decay by detecting mutant ADNP mRNA in patient blood. In this study, wild-type and ADNP mutants are investigated at the protein level and therefore optimal detection of the protein is required. Detection of ADNP by means of western blotting has been ambiguous with reported antibodies resulting in non-specific bands without unique ADNP signal. Validation of an N-terminal ADNP antibody (Aviva Systems) using a blocking peptide competition assay allowed to differentiate between specific and non-specific signals in different sample materials, resulting in a unique band signal around 150 kDa for ADNP, above its theoretical molecular weight of 124 kDa. Detection with different C-terminal antibodies confirmed the signals at an observed molecular weight of 150 kDa. Our antibody panel was subsequently tested by immunoblotting, comparing parental and homozygous CRISPR/Cas9 endonuclease-mediated Adnp knockout cell lines and showed disappearance of the 150 kDa signal, indicative for intact ADNP. By means of both a GFPSpark and Flag-tag N-terminally fused to a human ADNP expression vector, we detected wild-type ADNP together with mutant forms after introduction of patient mutations in E. coli expression systems by site-directed mutagenesis. Furthermore, we were also able to visualize endogenous ADNP with our C-terminal antibody panel in heterozygous cell lines carrying ADNP patient mutations, while the truncated ADNP mutants could only be detected with epitope-tag-specific antibodies, suggesting that addition of an epitope-tag possibly helps stabilizing the protein. However, western blotting of patient-derived hiPSCs, immortalized lymphoblastoid cell lines and post-mortem patient brain material failed to detect a native mutant ADNP protein. In addition, an N-terminal immunoprecipitation-competent ADNP antibody enriched truncating mutants in overexpression lysates, whereas implementation of the same method failed to enrich a possible native mutant protein in immortalized patient-derived lymphoblastoid cell lines. This study aims to shape awareness for critical assessment of mutant ADNP protein analysis in Helsmoortel-Van der Aa syndrome.
Asunto(s)
Proteínas de Homeodominio , Proteínas del Tejido Nervioso , Humanos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Mutación , Células HEK293 , Trastorno del Espectro Autista , Cardiopatías , Facies , Trastornos del NeurodesarrolloRESUMEN
Germline mutations of YY1 cause Gabriele-de Vries syndrome (GADEVS), a neurodevelopmental disorder featuring intellectual disability and a wide range of systemic manifestations. To dissect the cellular and molecular mechanisms underlying GADEVS, we combined large-scale imaging, single-cell multiomics and gene regulatory network reconstruction in 2D and 3D patient-derived physiopathologically relevant cell lineages. YY1 haploinsufficiency causes a pervasive alteration of cell type specific transcriptional networks, disrupting corticogenesis at the level of neural progenitors and terminally differentiated neurons, including cytoarchitectural defects reminiscent of GADEVS clinical features. Transcriptional alterations in neurons propagated to neighboring astrocytes through a major non-cell autonomous pro-inflammatory effect that grounds the rationale for modulatory interventions. Together, neurodevelopmental trajectories, synaptic formation and neuronal-astrocyte cross talk emerged as salient domains of YY1 dosage-dependent vulnerability. Mechanistically, cell-type resolved reconstruction of gene regulatory networks uncovered the regulatory interplay between YY1, NEUROG2 and ETV5 and its aberrant rewiring in GADEVS. Our findings underscore the reach of advanced in vitro models in capturing developmental antecedents of clinical features and exposing their underlying mechanisms to guide the search for targeted interventions.
RESUMEN
Copy number variation (CNV) at 7q11.23 causes Williams-Beuren syndrome (WBS) and 7q microduplication syndrome (7Dup), neurodevelopmental disorders (NDDs) featuring intellectual disability accompanied by symmetrically opposite neurocognitive features. Although significant progress has been made in understanding the molecular mechanisms underlying 7q11.23-related pathophysiology, the propagation of CNV dosage across gene expression layers and their interplay remains elusive. Here we uncovered 7q11.23 dosage-dependent symmetrically opposite dynamics in neuronal differentiation and intrinsic excitability. By integrating transcriptomics, translatomics, and proteomics of patient-derived and isogenic induced neurons, we found that genes related to neuronal transmission follow 7q11.23 dosage and are transcriptionally controlled, while translational factors and ribosomal genes are posttranscriptionally buffered. Consistently, we found phosphorylated RPS6 (p-RPS6) downregulated in WBS and upregulated in 7Dup. Surprisingly, p-4EBP was changed in the opposite direction, reflecting dosage-specific changes in total 4EBP levels. This highlights different dosage-sensitive dyregulations of the mTOR pathway as well as distinct roles of p-RPS6 and p-4EBP during neurogenesis. Our work demonstrates the importance of multiscale disease modeling across molecular and functional layers, uncovers the pathophysiological relevance of ribosomal biogenesis in a paradigmatic pair of NDDs, and uncouples the roles of p-RPS6 and p-4EBP as mechanistically actionable relays in NDDs.
Asunto(s)
Cromosomas Humanos Par 7 , Variaciones en el Número de Copia de ADN , Neuronas , Humanos , Neuronas/metabolismo , Neuronas/patología , Cromosomas Humanos Par 7/genética , Ribosomas/metabolismo , Ribosomas/genética , Neurogénesis/genética , Síndrome de Williams/genética , Síndrome de Williams/metabolismo , Síndrome de Williams/patología , Síndrome de Williams/fisiopatología , Proteína S6 Ribosómica/metabolismo , Proteína S6 Ribosómica/genética , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Masculino , Diferenciación Celular , FemeninoRESUMEN
BACKGROUND: Individuals affected with autism often suffer additional co-morbidities such as intellectual disability. The genes contributing to autism cluster on a relatively limited number of cellular pathways, including chromatin remodeling. However, limited information is available on how mutations in single genes can result in such pleiotropic clinical features in affected individuals. In this review, we summarize available information on one of the most frequently mutated genes in syndromic autism the Activity-Dependent Neuroprotective Protein (ADNP). RESULTS: Heterozygous and predicted loss-of-function ADNP mutations in individuals inevitably result in the clinical presentation with the Helsmoortel-Van der Aa syndrome, a frequent form of syndromic autism. ADNP, a zinc finger DNA-binding protein has a role in chromatin remodeling: The protein is associated with the pericentromeric protein HP1, the SWI/SNF core complex protein BRG1, and other members of this chromatin remodeling complex and, in murine stem cells, with the chromodomain helicase CHD4 in a ChAHP complex. ADNP has recently been shown to possess R-loop processing activity. In addition, many additional functions, for instance, in association with cytoskeletal proteins have been linked to ADNP. CONCLUSIONS: We here present an integrated evaluation of all current aspects of gene function and evaluate how abnormalities in chromatin remodeling might relate to the pleiotropic clinical presentation in individual"s" with Helsmoortel-Van der Aa syndrome.
Asunto(s)
Anomalías Múltiples , Trastorno Autístico , Discapacidad Intelectual , Humanos , Animales , Ratones , Trastorno Autístico/genética , Cromatina , Metilación de ADN , Proteínas de Homeodominio/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Discapacidad Intelectual/genética , Anomalías Múltiples/genéticaRESUMEN
E2 ubiquitin-conjugating enzymes are key elements of the ubiquitin (Ub) pathway, since they influence processivity and topology of the Ub chain assembly and, as a consequence, the fate of the target substrates. E2s are multi-domain proteins, with accessory N-terminal or C-terminal domains that can contribute to the specificity for the cognate Ub-like molecules, or even the E3. In this context, the thorough structural characterization of E2 accessory domains is mandatory, in particular when they are associated to specific functions. We here provide, by computational and comparative studies, the first evidence of an acidic domain (AD) conserved in the E2 sub-family 3R. It is an intrinsically disordered domain, in which elements for Ub or E3 recognition are maintained. This conserved acidic domain (AD) shows propensity for α-helix structures (185-192 and 204-218) in the proximity of the sites for interaction with the Ub or the cognate E3. Moreover, our results also suggest that AD can explore conformations with tertiary contacts mainly driven by aromatic and hydrophobic interactions, in absence of its interaction partners. The globular states are likely to be regulated by multiple phosphorylation events, which can trigger conformational changes toward more extended conformations, as judged by MD simulations of the phospho-variants. The extended conformations, in turn, promote the accessibility of the interaction sites for Ub and the E3. We also trace a parallel between this new and natively unfolded structural motif for Ub-recognition and the natively folded ubiquitin associated domain (UBA) typical of family 1 of E2 enzymes, which includes Ubc1. In fact, according to our calculations, Ubc1 maps at the interface between the space of the natively unfolded and folded proteins, as well as it shares common features with the acidic domain of family 3 members.
Asunto(s)
Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/metabolismo , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genéticaRESUMEN
E2 ubiquitin-conjugating enzymes are crucial mediators of protein ubiquitination, which strongly influence the ultimate fate of the target substrates. Recently, it has been shown that the activity of several enzymes of the ubiquitination pathway is finely tuned by phosphorylation, an ubiquitous mechanism for cellular regulation, which modulates protein conformation. In this contribution, we provide the first rationale, at the molecular level, of the regulatory mechanism mediated by casein kinase 2 (CK2) phosphorylation of E2 Cdc34-like enzymes. In particular, we identify two co-evolving signature elements in one of the larger families of E2 enzymes: an acidic insertion in ß4α2 loop in the proximity of the catalytic cysteine and two conserved key serine residues within the catalytic domain, which are phosphorylated by CK2. Our investigations, using yeast Cdc34 as a model, through 2.5 µs molecular dynamics simulations and biochemical assays, define these two elements as an important phosphorylation-controlled switch that modulates opening and closing of the catalytic cleft. The mechanism relies on electrostatic repulsions between a conserved serine phosphorylated by CK2 and the acidic residues of the ß4α2 loop, promoting E2 ubiquitin charging activity. Our investigation identifies a new and unexpected pivotal role for the acidic loop, providing the first evidence that this loop is crucial not only for downstream events related to ubiquitin chain assembly, but is also mandatory for the modulation of an upstream crucial step of the ubiquitin pathway: the ubiquitin charging in the E2 catalytic cleft.
Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , Enzimas Ubiquitina-Conjugadoras/química , Complejos de Ubiquitina-Proteína Ligasa/química , Ubiquitina/química , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Humanos , Simulación de Dinámica Molecular , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Fosforilación , Análisis de Componente Principal , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinámica , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismoRESUMEN
Large-scale estimations of the time of emergence of variants are essential to examine hypotheses concerning human evolution with precision. Using an open repository of genetic variant age estimations, we offer here a temporal evaluation of various evolutionarily relevant datasets, such as Homo sapiens-specific variants, high-frequency variants found in genetic windows under positive selection, introgressed variants from extinct human species, as well as putative regulatory variants specific to various brain regions. We find a recurrent bimodal distribution of high-frequency variants, but also evidence for specific enrichments of gene categories in distinct time windows, pointing to different periods of phenotypic changes, resulting in a mosaic. With a temporal classification of genetic mutations in hand, we then applied a machine learning tool to predict what genes have changed more in certain time windows, and which tissues these genes may have impacted more. Overall, we provide a fine-grained temporal mapping of derived variants in Homo sapiens that helps to illuminate the intricate evolutionary history of our species.
Asunto(s)
Evolución Biológica , Encéfalo , Humanos , MutaciónRESUMEN
We undertook a functional dissection of chromatin remodeler BAZ1B in neural crest (NC) stem cells (NCSCs) from a uniquely informative cohort of typical and atypical patients harboring 7q11.23 copy number variants. Our results reveal a key contribution of BAZ1B to NCSC in vitro induction and migration, coupled with a crucial involvement in NC-specific transcriptional circuits and distal regulation. By intersecting our experimental data with new paleogenetic analyses comparing modern and archaic humans, we found a modern-specific enrichment for regulatory changes both in BAZ1B and its experimentally defined downstream targets, thereby providing the first empirical validation of the human self-domestication hypothesis and positioning BAZ1B as a master regulator of the modern human face. In so doing, we provide experimental evidence that the craniofacial and cognitive/behavioral phenotypes caused by alterations of the Williams-Beuren syndrome critical region can serve as a powerful entry point into the evolution of the modern human face and prosociality.
Asunto(s)
Cromosomas Humanos Par 7/genética , Domesticación , Dosificación de Gen , Factores de Transcripción/genética , Síndrome de Williams/genética , Línea Celular , Movimiento Celular , Bases de Datos Genéticas , Epigenoma , Evolución Molecular , Cara , Redes Reguladoras de Genes , Código de Histonas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/metabolismoRESUMEN
The characteristic six layers of the mammalian neocortex develop sequentially as neurons are generated by neural progenitors and subsequently migrate past older neurons to their final position in the cortical plate. One of the earliest steps of neuronal differentiation is the formation of an axon. Small GTPases play essential roles during this process by regulating cytoskeletal dynamics and intracellular trafficking. While the function of GTPases has been studied extensively in cultured neurons and in vivo much less is known about their upstream regulators. Here we show that Arhgef7 (also called ßPix or Cool1) is essential for axon formation during cortical development. The loss of Arhgef7 results in an extensive loss of axons in cultured neurons and in the developing cortex. Arhgef7 is a guanine-nucleotide exchange factor (GEF) for Cdc42, a GTPase that has a central role in directing the formation of axons during brain development. However, active Cdc42 was not able to rescue the knockdown of Arhgef7. We show that Arhgef7 interacts with the GTPase TC10 that is closely related to Cdc42. Expression of active TC10 can restore the ability to extend axons in Arhgef7-deficient neurons. Our results identify an essential role of Arhgef7 during neuronal development that promotes axon formation upstream of TC10.