RESUMEN
Phthalates and the substitute plasticizer DINCH belong to the first group of priority substances investigated by the European Human Biomonitoring Initiative (HBM4EU) to answer policy-relevant questions and safeguard an efficient science-to-policy transfer of results. Human internal exposure levels were assessed using two data sets from all European regions and Israel. The first collated existing human biomonitoring (HBM) data (2005-2019). The second consisted of new data generated in the harmonized "HBM4EU Aligned Studies" (2014-2021) on children and teenagers for the ten most relevant phthalates and DINCH, accompanied by a quality assurance/quality control (QA/QC) program for 17 urinary exposure biomarkers. Exposures differed between countries, European regions, age groups and educational levels. Toxicologically derived Human biomonitoring guidance values (HBM-GVs) were exceeded in up to 5% of the participants of the HBM4EU Aligned Studies. A mixture risk assessment (MRA) including five reprotoxic phthalates (DEHP, DnBP, DiBP, BBzP, DiNP) revealed that for about 17% of the children and teenagers, health risks cannot be excluded. Concern about male reproductive health emphasized the need to include other anti-androgenic substances for MRA. Contaminated food and the use of personal care products were identified as relevant exposure determinants paving the way for new regulatory measures. Time trend analyses verified the efficacy of regulations: especially for the highly regulated phthalates exposure dropped significantly, while levels of the substitutes DINCH and DEHTP increased. The HBM4EU e-waste study, however, suggests that workers involved in e-waste management may be exposed to higher levels of restricted phthalates. Exposure-effect association studies indicated the relevance of a range of endpoints. A set of HBM indicators was derived to facilitate and accelerate science-to-policy transfer. Result indicators allow different groups and regions to be easily compared. Impact indicators allow health risks to be directly interpreted. The presented results enable successful science-to-policy transfer and support timely and targeted policy measures.
Asunto(s)
Monitoreo Biológico , Contaminantes Ambientales , Ácidos Ftálicos , Plastificantes , Humanos , Ácidos Ftálicos/orina , Plastificantes/análisis , Europa (Continente) , Contaminantes Ambientales/orina , Adolescente , Niño , Exposición a Riesgos Ambientales/análisis , Masculino , Medición de Riesgo , Femenino , Adulto , Monitoreo del Ambiente/métodosRESUMEN
BACKGROUND: Phthalates are ubiquitous in the environment. Despite short half-lives, chronic exposure can lead to endocrine disruption. The safety of phthalate substitute DINCH is unclear. OBJECTIVE: To evaluate associations between urinary concentrations of phthalate/DINCH metabolites and body mass index (BMI) z-score among children and adolescents. METHOD: We used Human Biomonitoring for Europe Aligned Studies data from 2876 children (12 studies, 6-12 years, 2014-2021) and 2499 adolescents (10 studies, 12-18 years, 2014-2021) with up to 14 phthalate/DINCH urinary metabolites. We used multilevel linear regression to assess associations between phthalate/DINCH concentrations and BMI z-scores, testing effect modification by sex. In a subset, Bayesian kernel machine regression (BKMR) and quantile-based g-computation assessed important predictors and mixture effects. RESULTS: In children, we found few associations in single pollutant models and no interactions by sex (p-interaction > 0.1). BKMR detected no relevant exposures (posterior inclusion probabilities, PIPs < 0.25), nor joint mixture effect. In adolescent single pollutant analysis, mono-ethyl phthalate (MEP) concentrations were associated with higher BMI z-score in males (ß = 0.08, 95 % CI: 0.001,0.15, per interquartile range increase in ln-transformed concentrations, p-interaction = 0.06). Conversely, mono-isobutyl phthalate (MiBP) was associated with a lower BMI z-score in both sexes (ß = -0.13, 95 % CI: -0.19, -0.07, p-interaction = 0.74), as was sum of di(2-ethylhexyl) phthalate (∑DEHP) metabolites in females only (ß = -0.08, 95 % CI: -0.14, -0.02, p-interaction = 0.01). In BKMR, higher BMI z-scores were predicted by MEP (PIP=0.90) and MBzP (PIP=0.84) in males. Lower BMI z-scores were predicted by MiBP (PIP=0.999), OH-MIDP (PIP=0.88) and OH-MINCH (PIP=0.72) in both sexes, less robustly by DEHP (PIP=0.61) in females. In quantile g-computation, the overall mixture effect was null for males, and trended negative for females (ß = -0.11, 95 % CI: -0.25, 0.03, per joint exposure quantile). CONCLUSION: In this large Europe-wide study, we found age/sex-specific differences between phthalate metabolites and BMI z-score, stronger in adolescents. Longitudinal studies with repeated phthalate measurements are needed.
Asunto(s)
Índice de Masa Corporal , Exposición a Riesgos Ambientales , Contaminantes Ambientales , Ácidos Ftálicos , Humanos , Ácidos Ftálicos/orina , Adolescente , Niño , Europa (Continente) , Estudios Transversales , Masculino , Femenino , Contaminantes Ambientales/orina , Contaminantes Ambientales/metabolismo , Exposición a Riesgos Ambientales/análisis , Monitoreo BiológicoRESUMEN
HBM reference values, in contrast to toxicologically derived values, are statistically derived values that provide information on the exposure of the population. The exceedance frequency (if applicable for individual population groups) is often a first assessment standard for the local exposure situation for municipalities. More than 25 years have passed since the German Human Biomonitoring Commission (HBMC) formulated the first recommendations for the derivation of population-based reference values (HBM reference values, RV95) for substance concentrations based on HBM studies. A fundamental revision is timely, for several reasons. There have been considerable advances in relevant statistical methods, which meant that previously time-consuming and inaccessible procedures and calculations are now widely available. Furthermore, not all steps for the derivation of HBM reference values were clearly elaborated in the first recommendations. With this revision we intended to achieve a rigorous standardization of the entire process of deriving HBM reference values, also to realise a higher degree of transparency. In accordance with established international practice, it is recommended to use the 95th percentile of the reference distribution as the HBM reference value. To this end, the empirical 95th percentile of a suitable sample should be rounded, ensuring that the rounded value is within the two-sided 95% confidence interval of the percentile. All estimates should be based on distribution-free methods, and the confidence interval should be estimated using a bootstrap approach, if possible, according to the BCa ("bias-corrected and accelerated bootstrap"). A minimum sample size of 80 observations is considered necessary. The entire procedure ensures that the derived HBM reference value is robust against at least two extreme values and can also be used for underlying mixed distributions. If it is known in advance that certain subgroups (different age groups, smokers, etc.) show differing internal exposures, it is recommended that group-specific HBM reference values should be derived. Especially when the sample sizes for individual subgroups are too small, individual datasets with potential outliers can be excluded in advance to homogenize the reference value population. In the second part, new HBM reference values based on data of the German Environmental Survey for Children and Adolescents (GerES V, 2014-2017) were derived in accordance with the revised recommendations. The GerES V is the most recent population-representative monitoring of human exposure to pollutants in Germany on children and adolescents aged 3-17 years (N = 2294). RV95 for GerES V are reported for four subgroups (males/females and 3-11/12-17 years) for 108 different substances including phthalates and alternative plasticisers, metals, organochlorine pesticides, polychlorinated biphenyls (PCB), per- and polyfluoroalkyl substances (PFAS), parabens, aprotic solvents, chlorophenols, polycyclic aromatic hydrocarbons (PAH) and UV filter, in total 135 biomarkers. Algorithms implemented in R were used for the statistics and the determination of the HBM reference values. To facilitate a quality control of the study data, the corresponding R source code is given, together with graphical representations of results. The HBM reference values listed in this article replace earlier RV95 values derived by the HBMC for children and adolescents from data of precedent GerES studies (e.g. published in Apel et al., 2017).
Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales , Humanos , Niño , Masculino , Femenino , Adolescente , Monitoreo del Ambiente/métodos , Valores de Referencia , Monitoreo Biológico , Contaminantes Ambientales/análisis , Alemania , Exposición a Riesgos Ambientales/análisisRESUMEN
Over the last twenty-five years it has become evident that exposure to several phthalates can have adverse effects on human health, such as endocrine disruption. This led to a series of EU regulations that resulted in a decrease in the production volumes of the restricted phthalates and an increased production of substitutes. The current study describes the impact of regulations and changes in production and use of phthalates and their substitutes on internal exposure patterns in two European populations since the beginning of the 2000'ies. Using harmonised data from young adults in Denmark (Danish Young Men Study, n = 1,063, spot urine) and Germany (Environmental Specimen Bank, n = 878, 24-h urine) with repeated cross-sectional design (3-11 cycles per biomarker) we applied Locally Estimated Scatterplot Smoothing (LOESS) and Generalized Linear Models (GLMs) to estimate time trends and the role of covariates on the trend (e.g. age, BMI). Time trends of daily excretion (µg/24h) are comparable between the two samples for the regulated (DEHP, BBzP, DiNP, DnBP, DiBP, DiDP/DPHP) as well as the non-regulated substances (DMP, DEP, DINCH, DEHTP) although the rate of change differ for some of the compounds. GLM results indicate that the daily excretion of the most regulated phthalates has decreased over time (DEHP yearly about 12-16%, BBzP 5%, DnBP 0.3-17%, and DiBP 4-12%). Interestingly, also the non-regulated phthalates DMP and DEP decreased by 6-18% per year. In sharp contrast, the phthalate substitutes DINCH and DEHTP show very steep annual increases (â¼10-68% and â¼100%, respectively) between 2009 and 2017. We did not find an effect of age, sex, BMI, or education on the time trend. The present study provides comparable insights into how exposure to phthalates and two of their substitutes have changed over the last two decades in Germany and Denmark.
Asunto(s)
Dietilhexil Ftalato , Contaminantes Ambientales , Ácidos Ftálicos , Masculino , Humanos , Adulto Joven , Monitoreo del Ambiente , Contaminantes Ambientales/orina , Estudios Transversales , Ácidos Ftálicos/orina , Dinamarca , Exposición a Riesgos Ambientales/análisisRESUMEN
Chemical mixture risk assessment has, in the past, primarily focused on exposures quantified in the external environment. Assessing health risks using human biomonitoring (HBM) data provides information on the internal concentration, from which a dose can be derived, of chemicals to which human populations are exposed. This study describes a proof of concept for conducting mixture risk assessment with HBM data, using the population-representative German Environmental Survey (GerES) V as a case study. We first attempted to identify groups of correlated biomarkers (also known as 'communities', reflecting co-occurrence patterns of chemicals) using a network analysis approach (n = 515 individuals) on 51 chemical substances in urine. The underlying question is whether the combined body burden of multiple chemicals is of potential health concern. If so, subsequent questions are which chemicals and which co-occurrence patterns are driving the potential health risks. To address this, a biomonitoring hazard index was developed by summing over hazard quotients, where each biomarker concentration was weighted (divided) by the associated HBM health-based guidance value (HBM-HBGV, HBM value or equivalent). Altogether, for 17 out of the 51 substances, health-based guidance values were available. If the hazard index was higher than 1, then the community was considered of potential health concern and should be evaluated further. Overall, seven communities were identified in the GerES V data. Of the five mixture communities where a hazard index was calculated, the highest hazard community contained N-Acetyl-S-(2-carbamoyl-ethyl)cysteine (AAMA), but this was the only biomarker for which a guidance value was available. Of the other four communities, one included the phthalate metabolites mono-isobutyl phthalate (MiBP) and mono-n-butyl phthalate (MnBP) with high hazard quotients, which led to hazard indices that exceed the value of one in 5.8% of the participants included in the GerES V study. This biological index method can put forward communities of co-occurrence patterns of chemicals on a population level that need further assessment in toxicology or health effects studies. Future mixture risk assessment using HBM data will benefit from additional HBM health-based guidance values based on population studies. Additionally, accounting for different biomonitoring matrices would provide a wider range of exposures. Future hazard index analyses could also take a common mode of action approach, rather than the more agnostic and non-specific approach we have taken in this proof of concept.
RESUMEN
Human health risk assessment of chemical mixtures is complex due to the almost infinite number of possible combinations of chemicals to which people are exposed to on a daily basis. Human biomonitoring (HBM) approaches can provide inter alia information on the chemicals that are in our body at one point in time. Network analysis applied to such data may provide insight into real-life mixtures by visualizing chemical exposure patterns. The identification of groups of more densely correlated biomarkers, so-called "communities", within these networks highlights which combination of substances should be considered in terms of real-life mixtures to which a population is exposed. We applied network analyses to HBM datasets from Belgium, Czech Republic, Germany, and Spain, with the aim to explore its added value for exposure and risk assessment. The datasets varied in study population, study design, and chemicals analysed. Sensitivity analysis was performed to address the influence of different approaches to standardise for creatinine content of urine. Our approach demonstrates that network analysis applied to HBM data of highly varying origin provides useful information with regards to the existence of groups of biomarkers that are densely correlated. This information is relevant for regulatory risk assessment, as well as for the design of relevant mixture exposure experiments.
RESUMEN
The European Joint Programme HBM4EU coordinated and advanced human biomonitoring (HBM) in Europe in order to provide science-based evidence for chemical policy development and improve chemical management. Arsenic (As) was selected as a priority substance under the HBM4EU initiative for which open, policy relevant questions like the status of exposure had to be answered. Internal exposure to inorganic arsenic (iAs), measured as Toxic Relevant Arsenic (TRA) (the sum of As(III), As(V), MMA, DMA) in urine samples of teenagers differed among the sampling sites (BEA (Spain) > Riksmaten adolescents (Sweden), ESTEBAN (France) > FLEHS IV (Belgium), SLO CRP (Slovenia)) with geometric means between 3.84 and 8.47 µg/L. The ratio TRA to TRA + arsenobetaine or the ratio TRA to total arsenic varied between 0.22 and 0.49. Main exposure determinants for TRA were the consumption of rice and seafood. When all studies were combined, Pearson correlation analysis showed significant associations between all considered As species. Higher concentrations of DMA, quantitatively a major constituent of TRA, were found with increasing arsenobetaine concentrations, a marker for organic As intake, e.g. through seafood, indicating that other sources of DMA than metabolism of inorganic As exist, e.g. direct intake of DMA or via the intake of arsenosugars or -lipids. Given the lower toxicity of DMA(V) versus iAs, estimating the amount of DMA not originating from iAs, or normalizing TRA for arsenobetaine intake could be useful for estimating iAs exposure and risk. Comparing urinary TRA concentrations with formerly derived biomonitoring equivalent (BE) for non-carcinogenic effects (6.4 µg/L) clearly shows that all 95th percentile exposure values in the different studies exceeded this BE. This together with the fact that cancer risk may not be excluded even at lower iAs levels, suggests a possible health concern for the general population of Europe.
Asunto(s)
Arsénico , Arsenicales , Adolescente , Humanos , Arsénico/análisis , Arsenicales/orina , Europa (Continente) , Francia , Exposición a Riesgos Ambientales/análisisRESUMEN
Per- and polyfluoroalkyl substances (PFAS) are widespread pollutants that may impact youth adiposity patterns. We investigated cross-sectional associations between PFAS and body mass index (BMI) in teenagers/adolescents across nine European countries within the Human Biomonitoring for Europe (HBM4EU) initiative. We used data from 1957 teenagers (12-18 yrs) that were part of the HBM4EU aligned studies, consisting of nine HBM studies (NEBII, Norway; Riksmaten Adolescents 2016-17, Sweden; PCB cohort (follow-up), Slovakia; SLO CRP, Slovenia; CROME, Greece; BEA, Spain; ESTEBAN, France; FLEHS IV, Belgium; GerES V-sub, Germany). Twelve PFAS were measured in blood, whilst weight and height were measured by field nurse/physician or self-reported in questionnaires. We assessed associations between PFAS and age- and sex-adjusted BMI z-scores using linear and logistic regression adjusted for potential confounders. Random-effects meta-analysis and mixed effects models were used to pool studies. We assessed mixture effects using molar sums of exposure biomarkers with toxicological/structural similarities and quantile g-computation. In all studies, the highest concentrations of PFAS were PFOS (medians ranging from 1.34 to 2.79 µg/L). There was a tendency for negative associations with BMI z-scores for all PFAS (except for PFHxS and PFHpS), which was borderline significant for the molar sum of [PFOA and PFNA] and significant for single PFOA [ß-coefficient (95% CI) per interquartile range fold change = -0.06 (-0.17, 0.00) and -0.08 (-0.15, -0.01), respectively]. Mixture assessment indicated similar negative associations of the total mixture of [PFOA, PFNA, PFHxS and PFOS] with BMI z-score, but not all compounds showed associations in the same direction: whilst [PFOA, PFNA and PFOS] were negatively associated, [PFHxS] associated positively with BMI z-score. Our results indicated a tendency for associations of relatively low PFAS concentrations with lower BMI in European teenagers. More prospective research is needed to investigate this potential relationship and its implications for health later in life.
Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Adolescente , Humanos , Fluorocarburos/análisis , Índice de Masa Corporal , Estudios Transversales , Estudios Prospectivos , Contaminantes Ambientales/análisisRESUMEN
Many legacy and emerging flame retardants (FRs) have adverse human and environmental health effects. This study reports legacy and emerging FRs in children from nine European countries from the HBM4EU aligned studies. Studies from Belgium, Czech Republic, Germany, Denmark, France, Greece, Slovenia, Slovakia, and Norway conducted between 2014 and 2021 provided data on FRs in blood and urine from 2136 children. All samples were collected and analyzed in alignment with the HBM4EU protocols. Ten halogenated FRs were quantified in blood, and four organophosphate flame retardants (OPFR) metabolites quantified in urine. Hexabromocyclododecane (HBCDD) and decabromodiphenyl ethane (DBDPE) were infrequently detected (<16% of samples). BDE-47 was quantified in blood from Greece, France, and Norway, with France (0.36 ng/g lipid) having the highest concentrations. BDE-153 and -209 were detected in <40% of samples. Dechlorane Plus (DP) was quantified in blood from four countries, with notably high median concentrations of 16 ng/g lipid in Slovenian children. OPFR metabolites had a higher detection frequency than other halogenated FRs. Diphenyl phosphate (DPHP) was quantified in 99% of samples across 8 countries at levels â¼5 times higher than other OPFR metabolites (highest median in Slovenia of 2.43 ng/g lipid). FR concentrations were associated with lifestyle factors such as cleaning frequency, employment status of the father of the household, and renovation status of the house, among others. The concentrations of BDE-47 in children from this study were similar to or lower than FRs found in adult matrices in previous studies, suggesting lower recent exposure and effectiveness of PBDE restrictions.
Asunto(s)
Retardadores de Llama , Adulto , Niño , Humanos , Éteres Difenilos Halogenados , Europa (Continente) , LípidosRESUMEN
Little is known about exposure determinants of acrylamide (AA), a genotoxic food-processing contaminant, in Europe. We assessed determinants of AA exposure, measured by urinary mercapturic acids of AA (AAMA) and glycidamide (GAMA), its main metabolite, in 3157 children/adolescents and 1297 adults in the European Human Biomonitoring Initiative. Harmonized individual-level questionnaires data and quality assured measurements of AAMA and GAMA (urine collection: 2014-2021), the short-term validated biomarkers of AA exposure, were obtained from four studies (Italy, France, Germany, and Norway) in children/adolescents (age range: 3-18 years) and six studies (Portugal, Spain, France, Germany, Luxembourg, and Iceland) in adults (age range: 20-45 years). Multivariable-adjusted pooled quantile regressions were employed to assess median differences (ß coefficients) with 95% confidence intervals (95% CI) in AAMA and GAMA (µg/g creatinine) in relation to exposure determinants. Southern European studies had higher AAMA than Northern studies. In children/adolescents, we observed significant lower AA associated with high socioeconomic status (AAMA:ß = - 9.1 µg/g creatinine, 95% CI - 15.8, - 2.4; GAMA: ß = - 3.4 µg/g creatinine, 95% CI - 4.7, - 2.2), living in rural areas (AAMA:ß = - 4.7 µg/g creatinine, 95% CI - 8.6, - 0.8; GAMA:ß = - 1.1 µg/g creatinine, 95% CI - 1.9, - 0.4) and increasing age (AAMA:ß = - 1.9 µg/g creatinine, 95% CI - 2.4, - 1.4; GAMA:ß = - 0.7 µg/g creatinine, 95% CI - 0.8, - 0.6). In adults, higher AAMA was also associated with high consumption of fried potatoes whereas lower AAMA was associated with higher body-mass-index. Based on this large-scale study, several potential determinants of AA exposure were identified in children/adolescents and adults in European countries.
Asunto(s)
Acrilamida , Monitoreo Biológico , Adolescente , Humanos , Adulto , Niño , Preescolar , Adulto Joven , Persona de Mediana Edad , Acrilamida/toxicidad , Creatinina , Biomarcadores , Encuestas y CuestionariosRESUMEN
Within the European Human Biomonitoring (HBM) Initiative HBM4EU we derived HBM indicators that were designed to help answering key policy questions and support chemical policies. The result indicators convey information on chemicals exposure of different age groups, sexes, geographical regions and time points by comparing median exposure values. If differences are observed for one group or the other, policy measures or risk management options can be implemented. Impact indicators support health risk assessment by comparing exposure values with health-based guidance values, such as human biomonitoring guidance values (HBM-GVs). In general, the indicators should be designed to translate complex scientific information into short and clear messages and make it accessible to policy makers but also to a broader audience such as stakeholders (e.g. NGO's), other scientists and the general public. Based on harmonized data from the HBM4EU Aligned Studies (2014-2021), the usefulness of our indicators was demonstrated for the age group children (6-11 years), using two case examples: one phthalate (Diisobutyl phthalate: DiBP) and one non-phthalate substitute (Di-isononyl cyclohexane-1,2- dicarboxylate: DINCH). For the comparison of age groups, these were compared to data for teenagers (12-18 years), and time periods were compared using data from the DEMOCOPHES project (2011-2012). Our result indicators proved to be suitable for demonstrating the effectiveness of policy measures for DiBP and the need of continuous monitoring for DINCH. They showed similar exposure for boys and girls, indicating that there is no need for gender focused interventions and/or no indication of sex-specific exposure patterns. They created a basis for a targeted approach by highlighting relevant geographical differences in internal exposure. An adequate data basis is essential for revealing differences for all indicators. This was particularly evident in our studies on the indicators on age differences. The impact indicator revealed that health risks based on exposure to DiBP cannot be excluded. This is an indication or flag for risk managers and policy makers that exposure to DiBP still is a relevant health issue. HBM indicators derived within HBM4EU are a valuable and important complement to existing indicator lists in the context of environment and health. Their applicability, current shortcomings and solution strategies are outlined.
Asunto(s)
Ácidos Ftálicos , Masculino , Niño , Femenino , Adolescente , Humanos , Políticas , Monitoreo Biológico , Ácidos CarboxílicosRESUMEN
Phthalates are mainly used as plasticizers and are associated inter alia with adverse effects on reproductive functions. While more and more national programs in Europe have started monitoring internal exposure to phthalates and its substitute 1,2-Cyclohexanedicarboxylic acid (DINCH), the comparability of results from such existing human biomonitoring (HBM) studies across Europe is challenging. They differ widely in time periods, study samples, degree of geographical coverage, design, analytical methodology, biomarker selection, and analytical quality assurance level. The HBM4EU initiative has gathered existing HBM data of 29 studies from participating countries, covering all European regions and Israel. The data were prepared and aggregated by a harmonized procedure with the aim to describe-as comparably as possible-the EU-wide general population's internal exposure to phthalates from the years 2005 to 2019. Most data were available from Northern (up to 6 studies and up to 13 time points), Western (11; 19), and Eastern Europe (9; 12), e.g., allowing for the investigation of time patterns. While the bandwidth of exposure was generally similar, we still observed regional differences for Butyl benzyl phthalate (BBzP), Di(2-ethylhexyl) phthalate (DEHP), Di-isononyl phthalate (DiNP), and Di-isobutyl phthalate (DiBP) with pronounced decreases over time in Northern and Western Europe, and to a lesser degree in Eastern Europe. Differences between age groups were visible for Di-n-butyl phthalate (DnBP), where children (3 to 5-year olds and 6 to 11-year olds) had lower urinary concentrations than adolescents (12 to 19-year-olds), who in turn had lower urinary concentrations than adults (20 to 39-year-olds). This study is a step towards making internal exposures to phthalates comparable across countries, although standardized data were not available, targeting European data sets harmonized with respect to data formatting and calculation of aggregated data (such as developed within HBM4EU), and highlights further suggestions for improved harmonization in future studies.
RESUMEN
Phthalates are mainly used as plasticizers for polyvinyl chloride (PVC). Exposure to several phthalates is associated with different adverse effects most prominently on the development of reproductive functions. The HBM4EU Aligned Studies (2014-2021) have investigated current European exposure to ten phthalates (DEP, BBzP, DiBP, DnBP, DCHP, DnPeP, DEHP, DiNP, DiDP, DnOP) and the substitute DINCH to answer the open policy relevant questions which were defined by HBM4EU partner countries and EU institutions as the starting point of the programme. The exposure dataset includes â¼5,600 children (6-11 years) and adolescents (12-18 years) from up to 12 countries per age group and covering the North, East, South and West European regions. Study data from participating studies were harmonised with respect to sample size and selection of participants, selection of biomarkers, and quality and comparability of analytical results to provide a comparable perspective of European exposure. Phthalate and DINCH exposure were deduced from urinary excretions of metabolites, where concentrations were expressed as their key descriptor geometric mean (GM) and 95th percentile (P95). This study aims at reporting current exposure levels and differences in these between European studies and regions, as well as comparisons to human biomonitoring guidance values (HBM-GVs). GMs for children were highest for ∑DEHP metabolites (33.6 µg/L), MiBP (26.6 µg/L), and MEP (24.4 µg/L) and lowest for∑DiDP metabolites (1.91 µg/L) and ∑DINCH metabolites (3.57 µg/L). In adolescents highest GMs were found for MEP (43.3 µg/L), ∑DEHP metabolites (28.8 µg/L), and MiBP (25.6 µg/L) and lowest for ∑DiDP metabolites (= 2.02 µg/L) and ∑DINCH metabolites (2.51 µg/L). In addition, GMs and P95 stratified by European region, sex, household education level, and degree of urbanization are presented. Differences in average biomarker concentrations between sampling sites (data collections) ranged from factor 2 to 9. Compared to the European average, children in the sampling sites OCC (Denmark), InAirQ (Hungary), and SPECIMEn (The Netherlands) had the lowest concentrations across all metabolites and ESTEBAN (France), NAC II (Italy), and CROME (Greece) the highest. For adolescents, comparably higher metabolite concentrations were found in NEB II (Norway), PCB cohort (Slovakia), and ESTEBAN (France), and lower concentrations in POLAES (Poland), FLEHS IV (Belgium), and GerES V-sub (Germany). Multivariate analyses (Survey Generalized Linear Models) indicate compound-specific differences in average metabolite concentrations between the four European regions. Comparison of individual levels with HBM-GVs revealed highest rates of exceedances for DnBP and DiBP, with up to 3 and 5%, respectively, in children and adolescents. No exceedances were observed for DEP and DINCH. With our results we provide current, detailed, and comparable data on exposure to phthalates in children and - for the first time - in adolescents, and - for the first time - on DINCH in children and adolescents of all four regions of Europe which are particularly suited to inform exposure and risk assessment and answer open policy relevant questions.
Asunto(s)
Contaminantes Ambientales , Ácidos Ftálicos , Humanos , Niño , Adolescente , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/análisis , Ácidos Ftálicos/metabolismoRESUMEN
Human biomonitoring (HBM) data in Europe are often fragmented and collected in different EU countries and sampling periods. Exposure levels for children and adult women in Europe were evaluated over time. For the period 2000-2010, literature and aggregated data were collected in a harmonized way across studies. Between 2011-2012, biobanked samples from the DEMOCOPHES project were used. For 2014-2021, HBM data were generated within the HBM4EU Aligned Studies. Time patterns on internal exposure were evaluated visually and statistically using the 50th and 90th percentiles (P50/P90) for phthalates/DINCH and organophosphorus flame retardants (OPFRs) in children (5-12 years), and cadmium, bisphenols and polycyclic aromatic hydrocarbons (PAHs) in women (24-52 years). Restricted phthalate metabolites show decreasing patterns for children. Phthalate substitute, DINCH, shows a non-significant increasing pattern. For OPFRs, no trends were statistically significant. For women, BPA shows a clear decreasing pattern, while substitutes BPF and BPS show an increasing pattern coinciding with the BPA restrictions introduced. No clear patterns are observed for PAHs or cadmium. Although the causal relations were not studied as such, exposure levels to chemicals restricted at EU level visually decreased, while the levels for some of their substitutes increased. The results support policy efficacy monitoring and the policy-supportive role played by HBM.
RESUMEN
In industrialized nations, human lead exposure has decreased significantly in recent decades. Nevertheless, due to its toxic effects, this heavy metal remains a public health concern with children and adolescents being particularly at risk. In Europe nowadays, oral intake via food and drinking water is the predominant exposure pathway for lead. The objective of the present study was to investigate the association between dietary factors and blood lead (PbB) level of 3- to 17-year-old children and adolescents living in Germany, using data from the fifth German Environmental Health Survey (GerES V) and the Child and Adolescent Health Survey (KiGGS Wave 2). GerES V and KiGGS Wave 2 are two national population-representative studies conducted between 2014 and 2017, including measurement of lead concentrations in blood from 720 children and adolescents aged 3-17 years (mean age = 10.21, SD age = 4.36). Using multiple linear regression, sociodemographic and environmental characteristics as well as dietary factors could be identified as significant exposure determinants of PbB concentrations. Lead intake via domestic tap water was the strongest predictor of elevated PbB levels with 27.6% (p-value< .001) higher concentrations of highest compared to none lead intake via tap water. Other foods which were found to be relevant to PbB levels were meat, fruit, and fruit juice. While meat or fruit consumption were each associated with about 13% (p-value < .05) lower PbB levels, fruit juice drinking was associated with up to 12.2% (p-value = .04) higher PbB levels. In conclusion, results indicate the importance of dietary habits for lead exposure in children and adolescents. To protect vulnerable groups, it is recommended that future research and lead-reducing measures pay more attention to dietary links.
Asunto(s)
Contaminantes Ambientales , Plomo , Adolescente , Niño , Preescolar , Exposición a Riesgos Ambientales , Contaminantes Ambientales/análisis , Alemania , Humanos , Encuestas y CuestionariosRESUMEN
Few data are available on the exposure of children to glyphosate (Gly) in Europe. Within HBM4EU, new HBM exposure data were collected from aligned studies at five sampling sites distributed over Europe (studies: SLO CRP (SI); ORGANIKO (CY); GerES V-sub (DE); 3XG (BE); ESTEBAN (FR)). Median Gly concentrations in urine were below or around the detection limit (0.1 µg/L). The 95th percentiles ranged between 0.18 and 1.03 µg Gly/L. The ratio of AMPA (aminomethylphosphonic acid; main metabolite of Gly) to Gly at molar basis was on average 2.2 and the ratio decreased with higher Gly concentrations, suggesting that other sources of AMPA, independent of metabolism of Gly to AMPA in the monitored participants, may concurrently operate. Using reverse dosimetry and HBM exposure data from five European countries (east, west and south Europe) combined with the proposed ADI (acceptable daily intake) of EFSA for Gly of 0.1 mg/kg bw/day (based on histopathological findings in the salivary gland of rats) indicated no human health risks for Gly in the studied populations at the moment. However, the absence of a group ADI for Gly+AMPA and ongoing discussions on e.g., endocrine disrupting effects cast some uncertainty in relation to the current single substance ADI for Gly. The carcinogenic effects of Gly are still debated in the scientific community. These outcomes would influence the risk conclusions presented here. Finally, regression analyses did not find clear associations between urinary exposure biomarkers and analyzed potential exposure determinants. More information from questionnaires targeting exposure-related behavior just before the sampling is needed.
RESUMEN
Due to their extensive usage, organophosphorus flame retardants (OPFRs) have been detected in humans and in the environment. Human are exposed to OPFRs via inhalation of indoor air, dust uptake or dietary uptake through contaminated food and drinking water. Only recently, few studies addressing dietary exposure to OPFRs were published. In this study, we used human biomonitoring (HBM) data of OPFRs to estimate how much the dietary intake may contribute to the total exposure. We estimated by reverse dosimetry, the daily intake of tris (2-chloroethyl) phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCIPP), tris (1,3-dichloro-2-propyl) phosphate (TDCIPP) for children using HBM data from studies with sampling sites in Belgium, Denmark, France, Germany, Slovenia and Slovakia. For estimating the dietary exposure, a deterministic approach was chosen. The occurrence data of selected food categories were used from a published Belgium food basket study. Since the occurrence data were left-censored, the Lower bound (LB)-Upper bound (UB) approach was used. The estimated daily intake (EDI) calculated on the basis of urine metabolite concentrations ranged from 0.03 to 0.18 µg/kg bw/d for TDCIPP, from 0.05 to 0.17 µg/kg bw/d for TCIPP and from 0.02 to 0.2 µg/kg bw/d for TCEP. Based on national food consumption data and occurrence data, the estimated dietary intake for TDCIPP ranged from 0.005 to 0.09 µg/kg bw/d, for TCIPP ranged from 0.037 to 0.2 µg/kg bw/d and for TCEP ranged from 0.007 to 0.018 µg/kg bw/d (summarized for all countries). The estimated dietary intake of TDCIPP contributes 11-173% to the EDI, depending on country and LB-UB scenario. The estimated dietary uptake of TCIPP was in all calculations, except in Belgium and France, above 100%. In the case of TCEP, it is assumed that the dietary intake ranges from 6 to 57%. The EDI and the estimated dietary intake contribute less than 3% to the reference dose (RfD). Therefore, the estimated exposure to OPFRs indicates a minimal health risk based on the current knowledge of available exposure, kinetic and toxicity data. We were able to show that the dietary exposure can have an impact on the general exposure based on our underlying exposure scenarios.
RESUMEN
Acrylamide, a substance potentially carcinogenic in humans, represents a very prevalent contaminant in food and is also contained in tobacco smoke. Occupational exposure to higher concentrations of acrylamide was shown to induce neurotoxicity in humans. To minimize related risks for public health, it is vital to obtain data on the actual level of exposure in differently affected segments of the population. To achieve this aim, acrylamide has been added to the list of substances of concern to be investigated in the HBM4EU project, a European initiative to obtain biomonitoring data for a number of pollutants highly relevant for public health. This report summarizes the results obtained for acrylamide, with a focus on time-trends and recent exposure levels, obtained by HBM4EU as well as by associated studies in a total of seven European countries. Mean biomarker levels were compared by sampling year and time-trends were analyzed using linear regression models and an adequate statistical test. An increasing trend of acrylamide biomarker concentrations was found in children for the years 2014-2017, while in adults an overall increase in exposure was found to be not significant for the time period of observation (2000-2021). For smokers, represented by two studies and sampling for, over a total three years, no clear tendency was observed. In conclusion, samples from European countries indicate that average acrylamide exposure still exceeds suggested benchmark levels and may be of specific concern in children. More research is required to confirm trends of declining values observed in most recent years.
RESUMEN
More than 20 years ago, acrylamide was added to the list of potential carcinogens found in many common dietary products and tobacco smoke. Consequently, human biomonitoring studies investigating exposure to acrylamide in the form of adducts in blood and metabolites in urine have been performed to obtain data on the actual burden in different populations of the world and in Europe. Recognizing the related health risk, the European Commission responded with measures to curb the acrylamide content in food products. In 2017, a trans-European human biomonitoring project (HBM4EU) was started with the aim to investigate exposure to several chemicals, including acrylamide. Here we set out to provide a combined analysis of previous and current European acrylamide biomonitoring study results by harmonizing and integrating different data sources, including HBM4EU aligned studies, with the aim to resolve overall and current time trends of acrylamide exposure in Europe. Data from 10 European countries were included in the analysis, comprising more than 5500 individual samples (3214 children and teenagers, 2293 adults). We utilized linear models as well as a non-linear fit and breakpoint analysis to investigate trends in temporal acrylamide exposure as well as descriptive statistics and statistical tests to validate findings. Our results indicate an overall increase in acrylamide exposure between the years 2001 and 2017. Studies with samples collected after 2018 focusing on adults do not indicate increasing exposure but show declining values. Regional differences appear to affect absolute values, but not the overall time-trend of exposure. As benchmark levels for acrylamide content in food have been adopted in Europe in 2018, our results may imply the effects of these measures, but only indicated for adults, as corresponding data are still missing for children.
RESUMEN
Metals reach humans through food and drinking water intake and inhalation of airborne particles and can have detrimental health effects in particular for children. The metals presented here (lead, cadmium, chromium, and mercury) could lead to toxic effects such as neurotoxicity, mutagenicity, and have been classified as (possible) carcinogens. Using population representative data from the German Environmental Survey 2014-2017 (GerES V) from 3- to 17-year-old children on lead and cadmium in blood (n = 720) and on cadmium, chromium, and mercury in urine (n = 2250) we describe current internal exposure levels, and socio-demographic and substance-specific exposure determinants. Average internal exposure (geometric means) in blood was 9.47 µg/L for lead and below 0.06 µg/L (limit of quantification) for cadmium, and in urine 0.072 µg/L for cadmium, 0.067 µg/L for mercury, and 0.393 µg/L for chromium, respectively. Younger children have higher concentrations of lead and chromium compared to 14-17-year-old adolescents, and boys have slightly higher mercury concentrations than girls. With respect to substance specific determinants, higher lead concentrations emerged in participants with domestic fuel and in non-smoking children with smokers in the household, higher levels of cadmium were associated with smoking and vegetarian diet and higher levels of mercury with the consumption of seafood and amalgam teeth fillings. No specific exposure determinants emerged for chromium. The health based guidance value HBM-I was not exceeded for mercury and for cadmium in urine it was exceeded by 0.6% of the study population. None of the exceedances was related to substantial tobacco smoke exposure. Comparisons to previous GerES cycles (GerES II, 1990-1992; GerES IV, 2003-2006) indicate continuously lower levels.