Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Commun Med (Lond) ; 2: 52, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35603305

RESUMEN

Background: Reliable data on the adult SARS-CoV-2 infection fatality rate in Germany are still scarce. We performed a federal state-wide cross-sectional seroprevalence study named SaarCoPS, that is representative for the adult population including elderly individuals and nursing home residents in the Saarland. Methods: Serum was collected from 2940 adults via stationary or mobile teams during the 1st pandemic wave steady state period. We selected an antibody test system with maximal specificity, also excluding seroreversion effects due to a high longitudinal test performance. For the calculations of infection and fatality rates, we accounted for the delays of seroconversion and death after infection. Results: Using a highly specific total antibody test detecting anti-SARS-CoV-2 responses over more than 180 days, we estimate an adult infection rate of 1.02% (95% CI: [0.64; 1.44]), an underreporting rate of 2.68-fold (95% CI: [1.68; 3.79]) and infection fatality rates of 2.09% (95% CI: (1.48; 3.32]) or 0.36% (95% CI: [0.25; 0.59]) in all adults including elderly individuals, or adults younger than 70 years, respectively. Conclusion: The study highlights the importance of study design and test performance for seroprevalence studies, particularly when seroprevalences are low. Our results provide a valuable baseline for evaluation of future pandemic dynamics and impact of public health measures on virus spread and human health in comparison to neighbouring countries such as Luxembourg or France.

2.
Open Forum Infect Dis ; 8(8): ofab364, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34409122

RESUMEN

BACKGROUND: The emergence of novel variants of concern of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demands fast and reliable detection of such variants in local populations. METHODS: Here we present a cost-efficient and fast workflow combining a prescreening of SARS-CoV-2-positive samples using reverse transcription polymerase chain reaction melting curve analysis with multiplexed IP-RP-HPLC-based single nucleotide primer extensions. RESULTS: The entire workflow from positive SARS-CoV-2 testing to base-specific identification of variants requires about 24 hours. CONCLUSIONS: We applied the sensitive method to monitor local variant of concern outbreaks in SARS-CoV-2-positive samples collected in a confined region of Germany.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA