Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 118(23): 233602, 2017 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-28644642

RESUMEN

We investigate the temperature dependence of photon coherence properties through two-photon interference (TPI) measurements from a single quantum dot (QD) under resonant excitation. We show that the loss of indistinguishability is related only to the electron-phonon coupling and is not affected by spectral diffusion. Through these measurements and a complementary microscopic theory, we identify two independent separate decoherence processes, both of which are associated with phonons. Below 10 K, we find that the relaxation of the vibrational lattice is the dominant contribution to the loss of TPI visibility. This process is non-Markovian in nature and corresponds to real phonon transitions resulting in a broad phonon sideband in the QD emission spectra. Above 10 K, virtual phonon transitions to higher lying excited states in the QD become the dominant dephasing mechanism, this leads to a broadening of the zero phonon line, and a corresponding rapid decay in the visibility. The microscopic theory we develop provides analytic expressions for the dephasing rates for both virtual phonon scattering and non-Markovian lattice relaxation.

2.
Phys Rev Lett ; 111(2): 026403, 2013 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-23889424

RESUMEN

We report on coherent emission of the neutral exciton state in a single semiconductor self-assembled InAs/GaAs quantum dot embedded in a one-dimensional waveguide, under resonant picosecond pulsed excitation. Direct measurements of the radiative lifetime and coherence time are performed as a function of excitation power and temperature. The characteristic damping of Rabi oscillations observed is attributed to an excitation-induced dephasing due to a resonant coupling between the emitter and the acoustic phonon bath of the matrix. Other sources responsible for the decrease of the coherence time have been evidenced, in particular an enhancement of the radiative recombination rate due to the resonant strong coupling between the dot and the one-dimensional optical mode. As a consequence, the emission couples very efficiently into the waveguide mode, leading to an additional relaxation term of the excited-state population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA