Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38339099

RESUMEN

A cell's ability to secrete extracellular vesicles (EVs) for communication is present in all three domains of life. Notably, Gram-negative bacteria produce a specific type of EVs called outer membrane vesicles (OMVs). We previously observed the presence of OMVs in human blood, which could represent a means of communication from the microbiota to the host. Here, in order to investigate the possible translocation of OMVs from the intestine to other organs, the mouse was used as an animal model after OMVs administration. To achieve this, we first optimized the signal of OMVs containing the fluorescent protein miRFP713 associated with the outer membrane anchoring peptide OmpA by adding biliverdin, a fluorescence cofactor, to the cultures. The miRFP713-expressing OMVs produced in E. coli REL606 strain were then characterized according to their diameter and protein composition. Native- and miRFP713-expressing OMVs were found to produce homogenous populations of vesicles. Finally, in vivo and ex vivo fluorescence imaging was used to monitor the distribution of miRFP713-OMVs in mice in various organs whether by intravenous injection or oral gavage. The relative stability of the fluorescence signals up to 3 days post-injection/gavage paves the way to future studies investigating the OMV-based communication established between the different microbiotas and their host.


Asunto(s)
Escherichia coli , Vesículas Extracelulares , Animales , Ratones , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Distribución Tisular , Vesículas Extracelulares/metabolismo , Intestinos , Bacterias Gramnegativas/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo
2.
J Nucl Cardiol ; 29(3): 1419-1429, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33502690

RESUMEN

BACKGROUND: Myocardial insulin resistance (IR) could be a predictive factor of cardiovascular events. This study aimed to introduce a new method using 123I-6-deoxy-6-iodo-D-glucose (6DIG), a pure tracer of glucose transport, for the assessment of IR using cardiac dynamic nuclear imaging. METHODS: The protocol evaluated first in rat-models consisted in two 6DIG injections and one of insulin associated with planar imaging and blood sampling. Compartmental modeling was used to analyze 6DIG kinetics in basal and insulin conditions and to obtain an index of IR. As a part of a translational approach, a clinical study was then performed in 5 healthy and 6 diabetic volunteers. RESULTS: In rodent models, the method revealed reproducible when performed twice at 7 days apart in the same animal. Rosiglitazone, an insulin-sensitizing drug, induced a significant increase of myocardial IR index in obese Zucker rats from 0.96 ± 0.18 to 2.26 ± 0.44 (P<.05) after 7 days of an oral treatment, and 6DIG IR indexes correlated with the gold standard IR index obtained through the hyperinsulinemic-euglycemic clamp (r=.68, P<.02). In human, a factorial analysis was applied on images to obtain vascular and myocardial kinetics before compartmental modeling. 1.5-fold to 2.2-fold decreases in mean cardiac IR indexes from healthy to diabetic volunteers were observed without reaching statistical significance. CONCLUSIONS: These preclinical results demonstrate the reproducibility and sensibility of this novel imaging methodology. Although this first in-human study showed that this new method could be rapidly performed, larger studies need to be planned in order to confirm its performance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Resistencia a la Insulina , Animales , Glucemia , Técnica de Clampeo de la Glucosa , Humanos , Insulina , Ratas , Ratas Zucker , Reproducibilidad de los Resultados
3.
BMC Biol ; 19(1): 173, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34433435

RESUMEN

BACKGROUND: Angiogenesis is the process by which new blood vessels arise from pre-existing ones. Fibroblast growth factor-2 (FGF-2), a leading member of the FGF family of heparin-binding growth factors, contributes to normal as well as pathological angiogenesis. Pre-mRNA alternative splicing plays a key role in the regulation of cellular and tissular homeostasis and is highly controlled by splicing factors, including SRSFs. SRSFs belong to the SR protein family and are regulated by serine/threonine kinases such as SRPK1. Up to now, the role of SR proteins and their regulators in the biology of endothelial cells remains elusive, in particular upstream signals that control their expression. RESULTS: By combining 2D endothelial cells cultures, 3D collagen sprouting assay, a model of angiogenesis in cellulose sponges in mice and a model of angiogenesis in zebrafish, we collectively show that FGF-2 promotes proliferation, survival, and sprouting of endothelial cells by activating a SRSF1/SRSF3/SRPK1-dependent axis. In vitro, we further demonstrate that this FGF-2-dependent signaling pathway controls VEGFR1 pre-mRNA splicing and leads to the generation of soluble VEGFR1 splice variants, in particular a sVEGFR1-ex12 which retains an alternative last exon, that contribute to FGF-2-mediated angiogenic functions. Finally, we show that sVEGFR1-ex12 mRNA level correlates with that of FGF-2/FGFR1 in squamous lung carcinoma patients and that sVEGFR1-ex12 is a poor prognosis marker in these patients. CONCLUSIONS: We demonstrate that FGF-2 promotes angiogenesis by activating a SRSF1/SRSF3/SRPK1 network that regulates VEGFR1 alternative splicing in endothelial cells, a process that could also contribute to lung tumor progression.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Neoplasias Pulmonares , Animales , Células Endoteliales , Factor 2 de Crecimiento de Fibroblastos/genética , Humanos , Ratones , Neovascularización Patológica/genética , Proteínas Serina-Treonina Quinasas , Precursores del ARN , Factores de Empalme Serina-Arginina/genética , Pez Cebra/genética
4.
Small ; 17(7): e2007177, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33502119

RESUMEN

Probing the dynamics and quantifying the activities of intracellular protein kinases that coordinate cell growth and division and constitute biomarkers and pharmacological targets in hyperproliferative and pathological disorders remain a challenging task. Here engineering and characterization of a nanobiosensor of the mitotic kinase CDK1, through multifunctionalization of carbon nanotubes with a CDK1-specific fluorescent peptide reporter, are described. This original reporter of CDK1 activity combines the sensitivity of a fluorescent biosensor with the unique physico-chemical and biological properties of nanotubes for multifunctionalization and efficient intracellular penetration. The functional versatility of this nanobiosensor enables implementation to quantify CDK1 activity in a sensitive and dose-dependent fashion in complex biological environments in vitro, to monitor endogenous kinase in living cells and directly within tumor xenografts in mice by fluorescence imaging, thanks to a ratiometric quantification strategy accounting for response relative to concentration in space and in time.


Asunto(s)
Proteína Quinasa CDC2 , Nanotubos de Carbono , Neoplasias Experimentales/enzimología , Animales , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Humanos , Ratones , Fosforilación
5.
J Pathol ; 242(1): 73-89, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28207159

RESUMEN

Bone metastasis affects >70% of patients with advanced breast cancer. However, the molecular mechanisms underlying this process remain unclear. On the basis of analysis of clinical datasets, and in vitro and in vivo experiments, we report that the ZNF217 oncogene is a crucial mediator and indicator of bone metastasis. Patients with high ZNF217 mRNA expression levels in primary breast tumours had a higher risk of developing bone metastases. MDA-MB-231 breast cancer cells stably transfected with ZNF217 (MDA-MB-231-ZNF217) showed the dysregulated expression of a set of genes with bone-homing and metastasis characteristics, which overlapped with two previously described 'osteolytic bone metastasis' gene signatures, while also highlighting the bone morphogenetic protein (BMP) pathway. The latter was activated in MDA-MB-231-ZNF217 cells, and its silencing by inhibitors (Noggin and LDN-193189) was sufficient to rescue ZNF217-dependent cell migration, invasion or chemotaxis towards the bone environment. Finally, by using non-invasive multimodal in vivo imaging, we found that ZNF217 increases the metastatic growth rate in the bone and accelerates the development of severe osteolytic lesions. Altogether, the findings of this study highlight ZNF217 as an indicator of the emergence of breast cancer bone metastasis; future therapies targeting ZNF217 and/or the BMP signalling pathway may be beneficial by preventing the development of bone metastases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Neoplasias Óseas/genética , Neoplasias Óseas/secundario , Neoplasias de la Mama/genética , Transactivadores/genética , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Neoplasias Óseas/metabolismo , Remodelación Ósea/genética , Neoplasias de la Mama/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Xenoinjertos , Humanos , Estimación de Kaplan-Meier , Ratones Desnudos , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , ARN Mensajero/genética , ARN Neoplásico/genética , Transducción de Señal/genética , Transactivadores/biosíntesis , Células Tumorales Cultivadas
6.
Nanomedicine ; 12(4): 921-932, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26724540

RESUMEN

New approaches that are more efficient and able to specifically reach lung tumors are needed. We developed new hyaluronan-based nanoparticles targeting CD44 receptors of two different sizes and compared their lung cancer cells targeting efficacy in vitro and in vivo. The nanoparticles' cellular uptake was dose-dependent, and specific to hyaluronan receptors, particularly CD44. The binding and internalization differed according to nanoparticle size. In vivo biodistribution studies in two orthotopic lung tumor models showed that intrapulmonary nebulized nanoparticles accumulated in lungs, but not in the tumor nodules. In contrast, despite a significant liver capture, intravenous injection led to a better accumulation of the nanoparticles in the lung tumors compared with the surrounding healthy lung tissues. We demonstrated that the hyaluronan-based nanoparticles size plays significant role in cellular uptake and biodistribution. Small nanoparticles showed active targeting of CD44-overexpressing tumors, suggesting that they could be used as drug-delivery system. FROM THE CLINICAL EDITOR: Combating cancers remains an important goal in clinical medicine. In this study, the authors investigated the ability of two hyaluronan-based nanoparticles targeting CD44 receptors to home in on lung cancer cells in an in-vivo orthotropic model. The preferential uptake of smaller sized nanoparticles via intravenous route has further enhanced the existing knowledge of future drug designs.


Asunto(s)
Sistemas de Liberación de Medicamentos , Receptores de Hialuranos/genética , Ácido Hialurónico/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas/administración & dosificación , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Línea Celular Tumoral , Portadores de Fármacos , Humanos , Ácido Hialurónico/química , Ácido Hialurónico/metabolismo , Neoplasias Pulmonares/patología , Nanopartículas/química , Tamaño de la Partícula , Polisacáridos/administración & dosificación , Polisacáridos/química , Distribución Tisular/efectos de los fármacos
7.
Adv Healthc Mater ; 12(30): e2301692, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37655491

RESUMEN

The reconstruction of critical-size bone defects in long bones remains a challenge for clinicians. A new osteoinductive medical device is developed here for long bone repair by combining a 3D-printed architectured cylindrical scaffold made of clinical-grade polylactic acid (PLA) with a polyelectrolyte film coating delivering the osteogenic bone morphogenetic protein 2 (BMP-2). This film-coated scaffold is used to repair a sheep metatarsal 25-mm long critical-size bone defect. In vitro and in vivo biocompatibility of the film-coated PLA material is proved according to ISO standards. Scaffold geometry is found to influence BMP-2 incorporation. Bone regeneration is followed using X-ray scans, µCT scans, and histology. It is shown that scaffold internal geometry, notably pore shape, influenced bone regeneration, which is homogenous longitudinally. Scaffolds with cubic pores of ≈870 µm and a low BMP-2 dose of ≈120 µg cm-3 induce the best bone regeneration without any adverse effects. The visual score given by clinicians during animal follow-up is found to be an easy way to predict bone regeneration. This work opens perspectives for a clinical application in personalized bone regeneration.


Asunto(s)
Huesos Metatarsianos , Andamios del Tejido , Animales , Ovinos , Regeneración Ósea , Osteogénesis , Poliésteres/farmacología , Polímeros/farmacología , Impresión Tridimensional , Ingeniería de Tejidos
8.
Biomedicines ; 10(5)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35625796

RESUMEN

Complete surgical removal of lesions improves survival of peritoneal carcinomatosis and can be enhanced by intraoperative near-infrared fluorescence imaging. Indocyanine green (ICG) is the only near-infrared fluorescent dye approved for clinical use, but it lacks specificity for tumor cells, highlighting the need for tumor-selective targeting agents. We compared the tumor-specific near-infrared fluorescent probes Bevacizumab-IRDye 800CW and Angiostamp800, which target tumor angiogenesis and cancer cells, to ICG for fluorescence-guided surgery in peritoneal carcinomatosis of ovarian origin. The probes were administered to mice with orthotopic peritoneal carcinomatosis prior to conventional and fluorescence-guided surgery. The influence of neoadjuvant chemotherapy was also assessed. Conventional surgery removed 88.0 ± 1.2% of the total tumor load in mice. Fluorescence-guided surgery allowed the resection of additional nodules, enhancing the total tumor burden resection by 9.8 ± 0.7%, 8.5 ± 0.8%, and 3.9 ± 1.2% with Angiostamp800, Bevacizumab-IRDye 800CW and ICG, respectively. Interestingly, among the resected nodules, 15% were false-positive with ICG, compared to only 1.4% with Angiostamp800 and 3.5% with Bevacizumab-IRDye 800CW. Furthermore, conventional surgery removed only 69.0 ± 3.9% of the total tumor burden after neoadjuvant chemotherapy. Fluorescence-guided surgery with Angiostamp800 and Bevacizumab-IRDye 800CW increased the total tumor burden resection to 88.7 ± 4.3%, whereas ICG did not improve surgery at all. Bevacizumab-IRDye 800CW and Angiostamp800 better detect ovarian tumors and metastases than the clinically used fluorescent tracer ICG, and can help surgeons completely remove tumors, especially after surgery neoadjuvant chemotherapy.

9.
Sci Rep ; 12(1): 12916, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902610

RESUMEN

The association between obstructive sleep apnea (OSA) and cancer is still debated and data are scarce regarding the link between OSA and breast cancer progression. Since conclusive epidemiological studies require large sample sizes and sufficient duration of exposure before incident cancer occurrence, basic science studies represent the most promising approach to appropriately address the topic. Here we assessed the impact of intermittent hypoxia (IH), the major hallmark of OSA, on the development of breast cancer and explored the specific involvement of the endothelin signaling pathway. Original in vitro and in vivo models were used where 3D-spheroids or cultures of murine 4T1 breast cancer cells were submitted to IH cycles, and nude NMRI mice, orthotopically implanted with 4T1 cells, were submitted to chronic IH exposure before and after implantation. The role of the endothelin-1 in promoting cancer cell development was investigated using the dual endothelin receptor antagonist, macitentan. In vitro exposure to IH significantly increased 4T1 cell proliferation and migration. Meta-analysis of 4 independent in vivo experiments showed that chronic IH exposure promoted tumor growth, assessed by caliper measurement (overall standardized mean difference: 1.00 [0.45-1.55], p < 0.001), bioluminescence imaging (1.65 [0.59-2.71]; p < 0.01) and tumor weight (0.86 [0.31-1.41], p < 0.01), and enhanced metastatic pulmonary expansion (0.77 [0.12-1.42]; p = 0.01). Both in vitro and in vivo tumor-promoting effects of IH were reversed by macitentan. Overall, these findings demonstrate that chronic intermittent hypoxia exposure promotes breast cancer growth and malignancy and that dual endothelin receptor blockade prevents intermittent hypoxia-induced tumor development.


Asunto(s)
Neoplasias , Apnea Obstructiva del Sueño , Animales , Endotelina-1/metabolismo , Hipoxia/metabolismo , Ratones , Receptor de Endotelina A
10.
J Biophotonics ; 14(2): e202000345, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33040477

RESUMEN

We evaluated the impact of light-scattering effects on spatial resolution in different shortwave infrared (SWIR) sub-regions by analyzing two SWIR emissive phantoms made of polydimethylsiloxane (PDMS)-gold nanoclusters (Au NCs) composite covered with mice skin, or capillary tubes filled with Au NCs or IRDye 800CW at different depth in intralipids and finally, after administration of the Au NCs intravenously in mice. Our findings highlighted the benefit of working at the highest tested spectral range of the SWIR region with a 50% enhancement of spatial resolution measured in artificial model when moving from NIR-II (1000-1300 nm) to NIR-IIa (1300-1450 nm) region, and a 25% reduction of the scattering from the skin determined by point spread function analysis from the NIR-II to NIR-IIb region (1500-1700 nm). We also confirmed that a series of Monte Carlo restoration of images significantly improved the spatial resolution in vivo in mice in deep tissues both in the NIR-II and NIR-IIa spectral windows.


Asunto(s)
Oro , Ondas de Radio , Animales , Rayos Infrarrojos , Ratones , Imagen Óptica , Fantasmas de Imagen
11.
Int J Biol Sci ; 16(9): 1616-1628, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32226306

RESUMEN

Rationale:In vivo molecular imaging in preclinical animal models is a tool of choice for understanding the pathophysiological mechanisms involved in cancer development and for conducting drug development research. Moreover, combining several imaging modalities can provide multifaceted, complementary and cross-validated information. Photoacoustic imaging (PAI) is a promising imaging modality that can reflect blood vasculature and tissue oxygenation as well as detect exogenous molecules, but one shortcoming of PAI is a lack of organic photoacoustic contrast agents capable of providing tumor contrast. Methods: In the present study, we designed an animal model of liver metastases from colon cancer and monitored metastasis development by in vivo bioluminescence and X-ray microcomputed tomography. Contrast-agent-free PAI was used to detect the respective amounts of oxy- and deoxyhemoglobin and, thus, liver tissue oxygenation. two contrast agents, Angiostamp800 and indocyanin green (ICG), respectively with and without tumor targeting specificity, were then evaluated for their dual fluorescence and photoacoustic detectability and were then used for combined PAI and fluorescence diffuse optical tomography (fDOT) at various disease development stages. Findings: Contrast-agent-free PAI reflected tumor angiogenesis and gradual hypoxia during metastasis development. Multispectral PAI enabled noninvasive real-time monitoring of ICG blood pharmacokinetics, which demonstrated tumor-related liver dysfunction. Both PAI and fluorescence ICG signals were clearly modified in metastasis-bearing livers but did not allow for differentiation between different disease stages. In contrast, there was a significant improvement achieved by using the tumor-specific marker Angiostamp800, which provided gradually increasing PAI and fDOT signals during metastasis development. Conclusion: We demonstrated for the first time the value of using Angiostamp800 as a bimodal tumor-targeting contrast agent for combined PAI and fluorescence imaging of liver metastasis progression in vivo.


Asunto(s)
Medios de Contraste , Neoplasias Hepáticas/secundario , Técnicas Fotoacústicas , Tomografía Óptica , Animales , Línea Celular Tumoral , Neoplasias del Colon/patología , Medios de Contraste/análisis , Medios de Contraste/farmacocinética , Femenino , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/farmacocinética , Humanos , Verde de Indocianina/análisis , Verde de Indocianina/farmacocinética , Hígado/metabolismo , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/metabolismo , Ratones Desnudos
12.
Theranostics ; 10(5): 2008-2028, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32104498

RESUMEN

CDK4/cyclin D kinase constitutes an attractive pharmacological target for development of anticancer therapeutics, in particular in KRAS-mutant lung cancer patients, who have a poor prognosis and no targeted therapy available yet. Although several ATP-competitive inhibitors of CDK4 have been developed for anticancer therapeutics, they suffer from limited specificity and efficacy. Methods: As an alternative to ATP-competitive inhibitors we have designed a stapled peptide to target the main interface between CDK4 and cyclin D, and have characterized its physico-chemical properties and affinity to bind cyclin D1. Results: We have validated a positive correlation between CDK4/cyclin D level and KRAS mutation in lung cancer patients. The stapled peptide enters cells rapidly and efficiently, and inhibits CDK4 kinase activity and proliferation in lung cancer cells. Its intrapulmonary administration in mice enables its retention in orthotopic lung tumours and complete inhibition of their growth when co-administered with Abemaciclib. Conclusion: The stapled peptide targeting the main interface between CDK4 and cyclin D provides promising therapeutic perspectives for patients with lung cancer.


Asunto(s)
Aminopiridinas/farmacología , Bencimidazoles/farmacología , Ciclina D/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Péptidos/farmacología , Proteínas Proto-Oncogénicas p21(ras)/efectos de los fármacos , Aminopiridinas/administración & dosificación , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Bencimidazoles/administración & dosificación , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Humanos , Neoplasias Pulmonares/genética , Ratones , Ratones Desnudos , Mutación , Imagen Óptica/métodos , Péptidos/administración & dosificación , Péptidos/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
13.
Cancers (Basel) ; 12(8)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781579

RESUMEN

Paclitaxel is a microtubule stabilizing agent and a successful drug for cancer chemotherapy inducing, however, adverse effects. To reduce the effective dose of paclitaxel, we searched for pharmaceutics which could potentiate its therapeutic effect. We screened a chemical library and selected Carba1, a carbazole, which exerts synergistic cytotoxic effects on tumor cells grown in vitro, when co-administrated with a low dose of paclitaxel. Carba1 targets the colchicine binding-site of tubulin and is a microtubule-destabilizing agent. Catastrophe induction by Carba1 promotes paclitaxel binding to microtubule ends, providing a mechanistic explanation of the observed synergy. The synergistic effect of Carba1 with paclitaxel on tumor cell viability was also observed in vivo in xenografted mice. Thus, a new mechanism favoring paclitaxel binding to dynamic microtubules can be transposed to in vivo mouse cancer treatments, paving the way for new therapeutic strategies combining low doses of microtubule targeting agents with opposite mechanisms of action.

14.
Front Pharmacol ; 10: 667, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275146

RESUMEN

Breast cancer with bone metastasis is essentially incurable with current anticancer therapies. The bone morphogenetic protein (BMP) pathway is an attractive therapeutic candidate, as it is involved in the bone turnover and in cancer cell formation and their colonization of distant organs such as the bone. We previously reported that in breast cancer cells, the ZNF217 oncogene drives BMP pathway activation, increases the metastatic growth rate in the bone, and accelerates the development of severe osteolytic lesions in mice. In the present study, we aimed at investigating the impact of the LDN-193189 compound, a potent inhibitor of the BMP type I receptor, on metastasis development in vivo. ZNF217-revLuc cells were injected into the left ventricle of nude mice (n = 16) while control mice (n = 13) were inoculated with control pcDNA6-revLuc cells. Mice from each group were treated or not with LDN-193189 for 35 days. We found that systemic LDN-193189 treatment of mice significantly enhanced metastasis development, by increasing both the number and the size of metastases. In pcDNA6-revLuc-injected mice, LDN-193189 also affected the kinetics of metastasis emergence. Altogether, these data suggest that in vivo, LDN-193189 might affect the interaction between breast cancer cells and the bone environment, favoring the emergence and development of multiple metastases. Hence, our report highlights the importance of the choice of drugs and therapeutic strategies used in the management of bone metastases.

15.
Nat Microbiol ; 4(7): 1208-1220, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31036909

RESUMEN

The protozoan parasite Toxoplasma gondii has co-evolved with its homeothermic hosts (humans included) strategies that drive its quasi-asymptomatic persistence in hosts, hence optimizing the chance of transmission to new hosts. Persistence, which starts with a small subset of parasites that escape host immune killing and colonize the so-called immune privileged tissues where they differentiate into a low replicating stage, is driven by the interleukin 12 (IL-12)-interferon-γ (IFN-γ) axis. Recent characterization of a family of Toxoplasma effectors that are delivered into the host cell, in which they rewire the host cell gene expression, has allowed the identification of regulators of the IL-12-IFN-γ axis, including repressors. We now report on the dense granule-resident effector, called TEEGR (Toxoplasma E2F4-associated EZH2-inducing gene regulator) that counteracts the nuclear factor-κB (NF-κB) signalling pathway. Once exported into the host cell, TEEGR ends up in the nucleus where it not only complexes with the E2F3 and E2F4 host transcription factors to induce gene expression, but also promotes shaping of a non-permissive chromatin through its capacity to switch on EZH2. Remarkably, EZH2 fosters the epigenetic silencing of a subset of NF-κB-regulated cytokines, thereby strongly contributing to the host immune equilibrium that influences the host immune response and promotes parasite persistence in mice.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/metabolismo , FN-kappa B/metabolismo , Proteínas Protozoarias/metabolismo , Transducción de Señal/genética , Toxoplasma/fisiología , Animales , Línea Celular , Núcleo Celular/metabolismo , Citocinas/metabolismo , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Expresión Génica , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos BALB C , Mutación , Carga de Parásitos , Regiones Promotoras Genéticas , Multimerización de Proteína , Proteínas Protozoarias/genética , Toxoplasma/genética , Toxoplasma/inmunología , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología
16.
Biochem Pharmacol ; 160: 1-13, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30529691

RESUMEN

Standard chemotherapies that interfere with microtubule dynamics are a chemotherapeutic option used for the patients with advanced malignancies that invariably relapse after targeted therapies. However, major efforts are needed to reduce their toxicity, optimize their efficacy, and reduce cancer chemoresistance to these agents. We previously identified a pyrrolo[2,3d]pyrimidine-based microtubule-depolymerizing agent (PP-13) that binds to the colchicine site of ß-tubulin and exhibits anticancer properties in solid human cancer cells, including chemoresistant subtypes. Here, we investigated the therapeutic potential of PP-13 in vitro and in vivo. PP-13 induced a mitotic blockade and apoptosis in several cancer cells cultured in two-dimensions or three-dimensions spheroids, in conjunction with reduced cell proliferation. Capillary-like tube formation assays using HUVECs showed that PP-13 displayed antiangiogenic properties. It also inhibited cancer cell motility and invasion, in in vitro wound-healing and transwell migration assays. Low concentration PP-13 (130 nmol.L-1) treatment significantly reduced the metastatic invasiveness of human cancer cells engrafts on chicken chorioallantoic membrane. In nude mice, 0.5 or 1 mg.kg-1 PP-13 intraperitoneally administered three-times a week reduced the sizes of paclitaxel-refractory orthotopic breast tumors, delayed the progression of metastasis, and decreased the global metastatic load compared to 0.5 mg.kg-1 paclitaxel or vehicle alone. PP-13 did not show any apparent early adverse effect in vivo. These data suggest that PP-13 is a promising alternative to standard chemotherapy in antimitotic drug-refractory tumors, especially through its impact on metastasis.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Colchicina/metabolismo , Pirimidinas/farmacología , Pirroles/farmacología , Animales , Antimitóticos/química , Antimitóticos/farmacología , Antineoplásicos/toxicidad , Sitios de Unión , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Embrión de Pollo , Femenino , Humanos , Ratones Endogámicos , Neovascularización Patológica/tratamiento farmacológico , Pirimidinas/química , Pirimidinas/toxicidad , Pirroles/química , Pirroles/toxicidad , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Nanoscale ; 11(19): 9341-9352, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-30950461

RESUMEN

Many solid tumors and their metastases are still resistant to current cancer treatments such as chemo- and radiotherapy. The presence of a small population of Cancer Stem Cells in tumors is held responsible for relapses. Moreover, the various physical barriers of the organism (e.g. blood-brain barrier) prevent many drugs from reaching the target cells. In order to alleviate this constraint, we suggest a Trojan horse strategy consisting of intravascular injection of macrophages loaded with therapeutic nanoparticles (an iron nanoparticle-based solution marketed under the name of FERINJECT®) to bring a high quantity of the latter to the tumor. The aim of this article is to assess the response of primary macrophages to FERINJECT® via functional assays in order to ensure that the macrophages loaded with these nanoparticles are still relevant for our strategy. Following this first step, we demonstrate that the loaded macrophages injected into the bloodstream are able to migrate to the tumor site using small-animal imaging. Finally, using synchrotron radiation, we validate an improvement of the radiotherapeutic effect when FERINJECT®-laden macrophages are deposited at the vicinity of cancer cells and irradiated.

18.
J Control Release ; 275: 117-128, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29474960

RESUMEN

Combinations of therapeutic agents could synergistically enhance the response of lung cancer cells. Co-delivery systems capable of transporting chemotherapeutics with different physicochemical properties and with the simultaneous release of drugs remain elusive. Here, we assess the ability of nanoparticles of 30-nm diameter obtained from the self-assembly of hyaluronan-based copolymer targeting CD44 receptors to encapsulate both gefitinib and vorinostat for effective combinational lung cancer treatment. Drug loading was performed by nanoprecipitation. Drug release experiments showed a slow release of both drugs after 5 days. Using two- and three-dimensional lung adenocarcinoma cell cultures, we observed that the nanoparticles were mostly found at the periphery of the CD44-expressing spheroids. These drug-loaded nanoparticles were as cytotoxic as free drugs in the two- and three-dimensional systems and toxicity was due to apoptosis induction. In mouse models, intravenous injection of hyaluronan-based nanoparticles showed a selective delivery to subcutaneous CD44-overexpressing tumors, despite a significant liver capture. In addition, the systemic toxicity of the free drugs was reduced by their co-delivery using the nanoparticles. Finally, intrapulmonary administration of drug-loaded nanoparticles, to avoid a possible hepatic toxicity due to their accumulation in the liver, showed a stronger inhibition of orthotopic lung tumor growth compared to free drugs. In conclusion, hyaluronan-based nanoparticles provide active targeting partially mediated by CD44, less-toxic drug release and improved antitumor efficiency.


Asunto(s)
Antineoplásicos/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Gefitinib/administración & dosificación , Ácido Hialurónico/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas/administración & dosificación , Vorinostat/administración & dosificación , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Femenino , Gefitinib/química , Humanos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/química , Neoplasias Pulmonares/metabolismo , Ratones Desnudos , Nanopartículas/química , Vorinostat/química
19.
EMBO Mol Med ; 9(3): 385-394, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28148555

RESUMEN

Toxoplasma gondii is an important food and waterborne pathogen causing toxoplasmosis, a potentially severe disease in immunocompromised or congenitally infected humans. Available therapeutic agents are limited by suboptimal efficacy and frequent side effects that can lead to treatment discontinuation. Here we report that the benzoxaborole AN3661 had potent in vitro activity against T. gondii Parasites selected to be resistant to AN3661 had mutations in TgCPSF3, which encodes a homologue of cleavage and polyadenylation specificity factor subunit 3 (CPSF-73 or CPSF3), an endonuclease involved in mRNA processing in eukaryotes. Point mutations in TgCPSF3 introduced into wild-type parasites using the CRISPR/Cas9 system recapitulated the resistance phenotype. Importantly, mice infected with T. gondii and treated orally with AN3661 did not develop any apparent illness, while untreated controls had lethal infections. Therefore, TgCPSF3 is a promising novel target of T. gondii that provides an opportunity for the development of anti-parasitic drugs.


Asunto(s)
Antiprotozoarios/farmacología , Compuestos de Boro/farmacología , Factor de Especificidad de Desdoblamiento y Poliadenilación/antagonistas & inhibidores , Toxoplasma/efectos de los fármacos , Toxoplasma/enzimología , Toxoplasmosis/tratamiento farmacológico , Administración Oral , Animales , Antiprotozoarios/administración & dosificación , Compuestos de Boro/administración & dosificación , Modelos Animales de Enfermedad , Resistencia a Medicamentos , Ratones , Pruebas de Sensibilidad Parasitaria , Mutación Puntual , Análisis de Supervivencia
20.
Biosens Bioelectron ; 85: 371-380, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27203461

RESUMEN

Melanoma constitutes the most aggressive form of skin cancer, which further metastasizes into a deadly form of cancer. The p16(INK4a)-Cyclin D-CDK4/6-pRb pathway is dysregulated in 90% of melanomas. CDK4/Cyclin D kinase hyperactivation, associated with mutation of CDK4, amplification of Cyclin D or loss of p16(INK4a) leads to increased risk of developing melanoma. This kinase therefore constitutes a key biomarker in melanoma and an emerging pharmacological target, however there are no tools enabling direct detection or quantification of its activity. Here we report on the design and application of a fluorescent peptide biosensor to quantify CDK4 activity in melanoma cell extracts, skin biopsies and melanoma xenografts. This biosensor provides sensitive means of comparing CDK4 activity between different melanoma cell lines and further responds to CDK4 downregulation by siRNA or small-molecule inhibitors. By affording means of monitoring CDK4 hyperactivity consequent to cancer-associated molecular alterations in upstream signaling pathways that converge upon this kinase, this biosensor offers an alternative to immunological identification of melanoma-specific biomarkers, thereby constituting an attractive tool for diagnostic purposes, providing complementary functional information to histological analysis, of particular utility for detection of melanoma onset in precancerous lesions. This is indeed the first fluorescent peptide biosensor which has been successfully implemented to monitor kinase activity in skin samples and melanoma tumour xenografts. Moreover by enabling to monitor response to CDK4 inhibitors, this biosensor constitutes an attractive companion assay to identify compounds of therapeutic relevance for melanoma.


Asunto(s)
Técnicas Biosensibles/métodos , Quinasa 4 Dependiente de la Ciclina/metabolismo , Colorantes Fluorescentes/metabolismo , Melanoma/metabolismo , Péptidos/metabolismo , Neoplasias Cutáneas/metabolismo , Piel/patología , Secuencia de Aminoácidos , Animales , Extractos Celulares/química , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/análisis , Pruebas de Enzimas/métodos , Colorantes Fluorescentes/química , Melanoma/patología , Ratones , Ratones Desnudos , Modelos Moleculares , Péptidos/química , Piel/metabolismo , Neoplasias Cutáneas/patología , Espectrometría de Fluorescencia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA