Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 110(44): 17844-9, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24127576

RESUMEN

The major mammalian apurinic/apyrimidinic endonuclease Ape1 is a multifunctional protein operating in protection of cells from oxidative stress via its DNA repair, redox, and transcription regulatory activities. The importance of Ape1 has been marked by previous work demonstrating its requirement for viability in mammalian cells. However, beyond a requirement for Ape1-dependent DNA repair activity, deeper molecular mechanisms of the fundamental role of Ape1 in cell survival have not been defined. Here, we report that Ape1 is an essential factor stabilizing telomeric DNA, and its deficiency is associated with telomere dysfunction and segregation defects in immortalized cells maintaining telomeres by either the alternative lengthening of telomeres pathway (U2OS) or telomerase expression (BJ-hTERT), or in normal human fibroblasts (IMR90). Through the expression of Ape1 derivatives with site-specific changes, we found that the DNA repair and N-terminal acetylation domains are required for the Ape1 function at telomeres. Ape1 associates with telomere proteins in U2OS cells, and Ape1 depletion causes dissociation of TRF2 protein from telomeres. Consistent with this effect, we also observed that Ape1 depletion caused telomere shortening in both BJ-hTERT and in HeLa cells. Thus, our study describes a unique and unpredicted role for Ape1 in telomere protection, providing a direct link between base excision DNA repair activities and telomere metabolism.


Asunto(s)
Reparación del ADN/fisiología , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Homeostasis del Telómero/genética , Western Blotting , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Hibridación Fluorescente in Situ , Telomerasa/metabolismo , Homeostasis del Telómero/fisiología
2.
Aging (Albany NY) ; 13(19): 22710-22731, 2021 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-34628368

RESUMEN

Cockayne syndrome (CS) is a rare, autosomal genetic disorder characterized by premature aging-like features, such as cachectic dwarfism, retinal atrophy, and progressive neurodegeneration. The molecular defect in CS lies in genes associated with the transcription-coupled branch of the nucleotide excision DNA repair (NER) pathway, though it is not yet clear how DNA repair deficiency leads to the multiorgan dysfunction symptoms of CS. In this work, we used a mouse model of severe CS with complete loss of NER (Csa-/-/Xpa-/-), which recapitulates several CS-related phenotypes, resulting in premature death of these mice at approximately 20 weeks of age. Although this CS model exhibits a severe progeroid phenotype, we found no evidence of in vitro endothelial cell dysfunction, as assessed by measuring population doubling time, migration capacity, and ICAM-1 expression. Furthermore, aortas from CX mice did not exhibit early senescence nor reduced angiogenesis capacity. Despite these observations, CX mice presented blood brain barrier disruption and increased senescence of brain endothelial cells. This was accompanied by an upregulation of inflammatory markers in the brains of CX mice, such as ICAM-1, TNFα, p-p65, and glial cell activation. Inhibition of neovascularization did not exacerbate neither astro- nor microgliosis, suggesting that the pro-inflammatory phenotype is independent of the neurovascular dysfunction present in CX mice. These findings have implications for the etiology of this disease and could contribute to the study of novel therapeutic targets for treating Cockayne syndrome patients.


Asunto(s)
Síndrome de Cockayne/genética , Síndrome de Cockayne/patología , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Animales , Barrera Hematoencefálica , Encéfalo/patología , Daño del ADN , Reparación del ADN/genética , Reparación del ADN/fisiología , Proteínas de Unión al ADN/genética , Células Endoteliales/fisiología , Ratones , Ratones Noqueados , Neuroglía , Enfermedades Neuroinflamatorias , Proteína de la Xerodermia Pigmentosa del Grupo A/genética
3.
Toxicol Appl Pharmacol ; 232(3): 376-83, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18706436

RESUMEN

Neuropathy target esterase (NTE) plays critical roles in embryonic development and maintenance of peripheral axons. It is a secondary target of some organophosphorus toxicants including analogs of insecticides and chemical warfare agents. Although the mechanistic role of NTE in vivo is poorly defined, it is known to hydrolyze lysophosphatidylcholine (LPC) in vitro and may protect cell membranes from cytotoxic accumulation of LPC. To determine the cellular function of NTE, Neuro-2a and COS-7 cells were transfected with a full-length human NTE-containing plasmid yielding recombinant NTE (rNTE). We find the same inhibitor sensitivity and specificity profiles for rNTE assayed with LPC or phenyl valerate (a standard NTE substrate) and that this correlation extends to the LPC hydrolases of human brain, lymphocytes and erythrocytes. All of these LPC hydrolases are therefore very similar to each other in respect to a conserved inhibitor binding site conformation. NTE is expressed in brain and lymphocytes and contributes to LPC hydrolase activities in these tissues. The enzyme or enzymes responsible for erythrocyte LPC hydrolase activity remain to be identified. We also show that rNTE protects Neuro-2a and COS-7 cells from exogenous LPC cytotoxicity. Expression of rNTE in Neuro-2a cells alters their phospholipid balance (analyzed by liquid chromatography-mass spectrometry with single ion monitoring) by lowering LPC-16:0 and LPC-18:0 and elevating glycerophosphocholine without a change in phosphatidylcholine-16:0/18:1 or 16:0/18:2. NTE therefore serves an important function in LPC homeostasis and action.


Asunto(s)
Hidrolasas de Éster Carboxílico/fisiología , Lisofosfatidilcolinas/farmacología , Animales , Encéfalo/enzimología , Células COS , Células Cultivadas , Chlorocebus aethiops , Eritrocitos/enzimología , Humanos , Lisofosfatidilcolinas/metabolismo , Organofosfatos/toxicidad
4.
Chem Biol Interact ; 175(1-3): 355-64, 2008 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-18495101

RESUMEN

Lipases play key roles in nearly all cells and organisms. Potent and selective inhibitors help to elucidate their physiological functions and associated metabolic pathways. Organophosphorus (OP) compounds are best known for their anticholinesterase properties but selectivity for lipases and other targets can also be achieved through structural optimization. This review considers several lipid systems in brain modulated by highly OP-sensitive lipases. Neuropathy target esterase (NTE) hydrolyzes lysophosphatidylcholine (lysoPC) as a preferred substrate. Gene deletion of NTE in mice is embryo lethal and the heterozygotes are hyperactive. NTE is very sensitive in vitro and in vivo to direct-acting OP delayed neurotoxicants and the related NTE-related esterase (NTE-R) is also inhibited in vivo. KIAA1363 hydrolyzes acetyl monoalkylglycerol ether (AcMAGE) of the platelet-activating factor (PAF) de novo biosynthetic pathway and is a marker of cancer cell invasiveness. It is also a detoxifying enzyme that hydrolyzes chlorpyrifos oxon (CPO) and some other potent insecticide metabolites. Monoacylglycerol lipase and fatty acid amide hydrolase regulate endocannabinoid levels with roles in motility, pain and memory. Inhibition of these enzymes in mice by OPs, such as isopropyl dodecylfluorophosphonate (IDFP), leads to dramatic elevation of brain endocannabinoids and distinct cannabinoid-dependent behavior. Hormone-sensitive lipase that hydrolyzes cholesteryl esters and diacylglycerols is a newly recognized in vivo CPO- and IDFP-target in brain. The OP chemotype can therefore be used in proteomic and metabolomic studies to further elucidate the biological function and toxicological significance of lipases in lipid metabolism. Only the first steps have been taken to achieve appropriate selective action for OP therapeutic agents.


Asunto(s)
Encéfalo/efectos de los fármacos , Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Lipasa/metabolismo , Lisofosfolípidos/metabolismo , Organofosfatos/farmacología , Éteres Fosfolípidos/metabolismo , Animales , Encéfalo/metabolismo , Humanos
5.
Sci Rep ; 7(1): 9674, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28852018

RESUMEN

Ape1 is the major apurinic/apyrimidinic (AP) endonuclease activity in mammalian cells, and a key factor in base-excision repair of DNA. High expression or aberrant subcellular distribution of Ape1 has been detected in many cancer types, correlated with drug response, tumor prognosis, or patient survival. Here we present evidence that Ape1 facilitates BRCA1-mediated homologous recombination repair (HR), while counteracting error-prone non-homologous end joining of DNA double-strand breaks. Furthermore, Ape1, coordinated with checkpoint kinase Chk2, regulates drug response of glioblastoma cells. Suppression of Ape1/Chk2 signaling in glioblastoma cells facilitates alternative means of damage site recruitment of HR proteins as part of a genomic defense system. Through targeting "HR-addicted" temozolomide-resistant glioblastoma cells via a chemical inhibitor of Rad51, we demonstrated that targeting HR is a promising strategy for glioblastoma therapy. Our study uncovers a critical role for Ape1 in DNA repair pathway choice, and provides a mechanistic understanding of DNA repair-supported chemoresistance in glioblastoma cells.


Asunto(s)
Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Tolerancia a Medicamentos , Glioblastoma/patología , Redes y Vías Metabólicas , Ubiquitina-Proteína Ligasas/metabolismo , Quinasa de Punto de Control 2/metabolismo , Recombinación Homóloga , Humanos
6.
NPJ Aging Mech Dis ; 2: 16022, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28721274

RESUMEN

Accumulation of DNA damage is intricately linked to aging, aging-related diseases and progeroid syndromes such as Cockayne syndrome (CS). Free radicals from endogenous oxidative energy metabolism can damage DNA, however the potential of acute or chronic DNA damage to modulate cellular and/or organismal energy metabolism remains largely unexplored. We modeled chronic endogenous genotoxic stress using a DNA repair-deficient Csa-/-|Xpa-/- mouse model of CS. Exogenous genotoxic stress was modeled in mice in vivo and primary cells in vitro treated with different genotoxins giving rise to diverse spectrums of lesions, including ultraviolet radiation, intrastrand crosslinking agents and ionizing radiation. Both chronic endogenous and acute exogenous genotoxic stress increased mitochondrial fatty acid oxidation (FAO) on the organismal level, manifested by increased oxygen consumption, reduced respiratory exchange ratio, progressive adipose loss and increased FAO in tissues ex vivo. In multiple primary cell types, the metabolic response to different genotoxins manifested as a cell-autonomous increase in oxidative phosphorylation (OXPHOS) subsequent to a transient decline in steady-state NAD+ and ATP levels, and required the DNA damage sensor PARP-1 and energy-sensing kinase AMPK. We conclude that increased FAO/OXPHOS is a general, beneficial, adaptive response to DNA damage on cellular and organismal levels, illustrating a fundamental link between genotoxic stress and energy metabolism driven by the energetic cost of DNA damage. Our study points to therapeutic opportunities to mitigate detrimental effects of DNA damage on primary cells in the context of radio/chemotherapy or progeroid syndromes.

7.
PLoS One ; 9(4): e93911, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24705386

RESUMEN

Stroke is a major complication of cardiovascular surgery, resulting in over 100,000 deaths and over a million postoperative encephalopathies annually in the US and Europe. While mitigating damage from stroke after it occurs has proven elusive, opportunities to reduce the incidence and/or severity of stroke prior to surgery in at-risk individuals remain largely unexplored. We tested the potential of short-term preoperative dietary restriction to provide neuroprotection in rat models of focal stroke. Rats were preconditioned with either three days of water-only fasting or six days of a protein free diet prior to induction of transient middle cerebral artery occlusion using two different methods, resulting in either a severe focal stroke to forebrain and midbrain, or a mild focal stroke localized to cortex only. Infarct volume, functional recovery and molecular markers of damage and protection were assessed up to two weeks after reperfusion. Preoperative fasting for 3 days reduced infarct volume after severe focal stroke. Neuroprotection was associated with modulation of innate immunity, including elevation of circulating neutrophil chemoattractant C-X-C motif ligand 1 prior to ischemia and suppression of striatal pro-inflammatory markers including tumor necrosis factor α, its receptor and downstream effector intercellular adhesion molecule-1 after reperfusion. Similarly, preoperative dietary protein restriction for 6 days reduced ischemic injury and improved functional recovery in a milder cortical infarction model. Our results suggest that short-term dietary restriction regimens may provide simple and translatable approaches to reduce perioperative stroke severity in high-risk elective vascular surgery.


Asunto(s)
Dieta con Restricción de Proteínas , Ayuno , Fármacos Neuroprotectores/farmacología , Periodo Preoperatorio , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/prevención & control , Animales , Glucemia , Citocinas/sangre , Molécula 1 de Adhesión Intercelular/metabolismo , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Estadísticas no Paramétricas , Accidente Cerebrovascular/cirugía , Factor de Necrosis Tumoral alfa/metabolismo
8.
Aging Cell ; 12(6): 1144-7, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23895664

RESUMEN

Cockayne syndrome (CS) is a rare autosomal recessive segmental progeria characterized by growth failure, lipodystrophy, neurological abnormalities, and photosensitivity, but without skin cancer predisposition. Cockayne syndrome life expectancy ranges from 5 to 16 years for the two most severe forms (types II and I, respectively). Mouse models of CS have thus far been of limited value due to either very mild phenotypes, or premature death during postnatal development prior to weaning. The cause of death in severe CS models is unknown, but has been attributed to extremely rapid aging. Here, we found that providing mutant pups with soft food from as late as postnatal day 14 allowed survival past weaning with high penetrance independent of dietary macronutrient balance in a novel CS model (Csa(-/-) | Xpa(-/-)). Survival past weaning revealed a number of CS-like symptoms including small size, progressive loss of adiposity, and neurological symptoms, with a maximum lifespan of 19 weeks. Our results caution against interpretation of death before weaning as premature aging, and at the same time provide a valuable new tool for understanding mechanisms of progressive CS-related progeroid symptoms including lipodystrophy and neurodysfunction.


Asunto(s)
Síndrome de Cockayne/fisiopatología , Dieta , Longevidad , Progeria/fisiopatología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Lipodistrofia/patología , Ratones , Ratones Endogámicos C57BL , Destete
9.
Sci Transl Med ; 4(118): 118ra11, 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-22277968

RESUMEN

Dietary restriction, or reduced food intake without malnutrition, increases life span, health span, and acute stress resistance in model organisms from yeast to nonhuman primates. Although dietary restriction is beneficial for human health, this treatment is not widely used in the clinic. Here, we show that short-term, ad libitum feeding of diets lacking essential nutrients increased resistance to surgical stress in a mouse model of ischemia reperfusion injury. Dietary preconditioning by 6 to 14 days of total protein deprivation, or removal of the single essential amino acid tryptophan, protected against renal and hepatic ischemic injury, resulting in reduced inflammation and preserved organ function. Pharmacological treatment with halofuginone, which activated the amino acid starvation response within 3 days by mimicking proline deprivation, was also beneficial. Both dietary and pharmacological interventions required the amino acid sensor and eIF2α (eukaryotic translation initiation factor 2α) kinase Gcn2 (general control nonderepressible 2), implicating the amino acid starvation response and translational control in stress protection. Thus, short-term dietary or pharmacological interventions that modulate amino acid sensing can confer stress resistance in models of surgical ischemia reperfusion injury.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Daño por Reperfusión/prevención & control , Daño por Reperfusión/cirugía , Estrés Fisiológico , Triptófano/deficiencia , Animales , Proteínas en la Dieta/metabolismo , Humanos , Riñón/irrigación sanguínea , Riñón/efectos de los fármacos , Riñón/patología , Hígado/irrigación sanguínea , Hígado/efectos de los fármacos , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos/efectos de los fármacos , Piperidinas/farmacología , Prolina/farmacología , Deficiencia de Proteína/complicaciones , Deficiencia de Proteína/patología , Quinazolinonas/farmacología , Daño por Reperfusión/complicaciones , Daño por Reperfusión/patología , Estrés Fisiológico/efectos de los fármacos , Triptófano/metabolismo
10.
Toxicol Appl Pharmacol ; 224(1): 98-104, 2007 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17663017

RESUMEN

Brain neuropathy target esterase (NTE), associated with organophosphorus (OP)-induced delayed neuropathy, has the same OP inhibitor sensitivity and specificity profiles assayed in the classical way (paraoxon-resistant, mipafox-sensitive hydrolysis of phenyl valerate) or with lysophosphatidylcholine (LysoPC) as the substrate. Extending our earlier observation with mice, we now examine human erythrocyte, lymphocyte, and brain LysoPC hydrolases as possible sensitive targets for OP delayed neurotoxicants and insecticides. Inhibitor profiling of human erythrocytes and lymphocytes gave the surprising result of essentially the same pattern as with brain. Human erythrocyte LysoPC hydrolases are highly sensitive to OP delayed neurotoxicants, with in vitro IC50 values of 0.13-85 nM for longer alkyl analogs, and poorly sensitive to the current OP insecticides. In agricultural workers, erythrocyte LysoPC hydrolyzing activities are similar for newborn children and their mothers and do not vary with paraoxonase status but have high intersample variation that limits their use as a biomarker. Mouse erythrocyte LysoPC hydrolase activity is also of low sensitivity in vitro and in vivo to the OP insecticides whereas the delayed neurotoxicant ethyl n-octylphosphonyl fluoride inhibits activity in vivo at 1-3 mg/kg. Overall, inhibition of blood LysoPC hydrolases is as good as inhibition of brain NTE as a predictor of OP inducers of delayed neuropathy. NTE and lysophospholipases (LysoPLAs) both hydrolyze LysoPC, yet they are in distinct enzyme families with no sequence homology and very different catalytic sites. The relative contributions of NTE and LysoPLAs to LysoPC hydrolysis and clearance from erythrocytes, lymphocytes, and brain remain to be defined.


Asunto(s)
Acetilcolinesterasa/metabolismo , Encéfalo/enzimología , Eritrocitos/enzimología , Linfocitos/enzimología , Neurotoxinas/toxicidad , Compuestos Organofosforados/toxicidad , Acetilcolinesterasa/sangre , Adulto , Enfermedades de los Trabajadores Agrícolas/sangre , Enfermedades de los Trabajadores Agrícolas/enzimología , Animales , Arildialquilfosfatasa/genética , Encéfalo/efectos de los fármacos , Femenino , Genotipo , Humanos , Técnicas In Vitro , Recién Nacido , Insecticidas/toxicidad , Ratones , Embarazo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA