Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
PLoS Genet ; 18(3): e1010109, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35286299

RESUMEN

ARP/ASCL transcription factors are key determinants of cell fate specification in a wide variety of tissues, coordinating the acquisition of generic cell fates and of specific subtype identities. How these factors, recognizing highly similar DNA motifs, display specific activities, is not yet fully understood. To address this issue, we overexpressed different ARP/ASCL factors in zebrafish ascl1a-/- mutant embryos to determine which ones are able to rescue the intestinal secretory lineage. We found that Ascl1a/b, Atoh1a/b and Neurod1 factors are all able to trigger the first step of the secretory regulatory cascade but distinct secretory cells are induced by these factors. Indeed, Neurod1 rescues the enteroendocrine lineage while Ascl1a/b and Atoh1a/b rescue the goblet cells. Gain-of-function experiments with Ascl1a/Neurod1 chimeric proteins revealed that the functional divergence is encoded by a 19-aa ultra-conserved element (UCE), present in all Neurod members but absent in the other ARP/ASCL proteins. Importantly, inserting the UCE into the Ascl1a protein reverses the rescuing capacity of this Ascl1a chimeric protein that cannot rescue the goblet cells anymore but can efficiently rescue the enteroendocrine cells. This novel domain acts indeed as a goblet cell fate repressor that inhibits gfi1aa expression, known to be important for goblet cell differentiation. Deleting the UCE domain of the endogenous Neurod1 protein leads to an increase in the number of goblet cells concomitant with a reduction of the enteroendocrine cells, phenotype also observed in the neurod1 null mutant. This highlights the crucial function of the UCE domain for NeuroD1 activity in the intestine. As Gfi1 acts as a binary cell fate switch in several tissues where Neurod1 is also expressed, we can envision a similar role of the UCE in other tissues, allowing Neurod1 to repress Gfi1 to influence the balance between cell fates.


Asunto(s)
Células Caliciformes , Pez Cebra , Animales , Diferenciación Celular/genética , Células Caliciformes/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
BMC Biol ; 18(1): 109, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32867764

RESUMEN

BACKGROUND: Endocrine cells of the zebrafish digestive system play an important role in regulating metabolism and include pancreatic endocrine cells (PECs) clustered in the islets of Langerhans and the enteroendocrine cells (EECs) scattered in the intestinal epithelium. Despite EECs and PECs are being located in distinct organs, their differentiation involves shared molecular mechanisms and transcription factors. However, their degree of relatedness remains unexplored. In this study, we investigated comprehensively the similarity of EECs and PECs by defining their transcriptomic landscape and comparing the regulatory programmes controlled by Pax6b, a key player in both EEC and PEC differentiations. RESULTS: RNA sequencing was performed on EECs and PECs isolated from wild-type and pax6b mutant zebrafish. Data mining of wild-type zebrafish EEC data confirmed the expression of orthologues for most known mammalian EEC hormones, but also revealed the expression of three additional neuropeptide hormones (Proenkephalin-a, Calcitonin-a and Adcyap1a) not previously reported to be expressed by EECs in any species. Comparison of transcriptomes from EECs, PECs and other zebrafish tissues highlights a very close similarity between EECs and PECs, with more than 70% of genes being expressed in both endocrine cell types. Comparison of Pax6b-regulated genes in EECs and PECs revealed a significant overlap. pax6b loss-of-function does not affect the total number of EECs and PECs but instead disrupts the balance between endocrine cell subtypes, leading to an increase of ghrelin- and motilin-like-expressing cells in both the intestine and pancreas at the expense of other endocrine cells such as beta and delta cells in the pancreas and pyyb-expressing cells in the intestine. Finally, we show that the homeodomain of Pax6b is dispensable for its action in both EECs and PECs. CONCLUSION: We have analysed the transcriptomic landscape of wild-type and pax6b mutant zebrafish EECs and PECs. Our study highlights the close relatedness of EECs and PECs at the transcriptomic and regulatory levels, supporting the hypothesis of a common phylogenetic origin and underscoring the potential implication of EECs in metabolic diseases such as type 2 diabetes.


Asunto(s)
Células Endocrinas/metabolismo , Regulación de la Expresión Génica , Intestinos/fisiología , Factor de Transcripción PAX6/genética , Páncreas/metabolismo , Transcriptoma , Pez Cebra/genética , Animales , Factor de Transcripción PAX6/metabolismo , Pez Cebra/metabolismo
3.
Wound Repair Regen ; 26(2): 238-244, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29663654

RESUMEN

The zebrafish is a popular animal model with well-known regenerative capabilities. To study regeneration in this fish, the nitroreductase/metronidazole-mediated system is widely used for targeted ablation of various cell types. Nevertheless, we highlight here some variability in ablation efficiencies with the metronidazole prodrug that led us to search for a more efficient and reliable compound. Herein, we present nifurpirinol, another nitroaromatic antibiotic, as a more potent prodrug compared to metronidazole to trigger cell-ablation in nitroreductase expressing transgenic models. We show that nifurpirinol induces robust and reliable ablations at concentrations 2,000 fold lower than metronidazole and three times below its own toxic concentration. We confirmed the efficiency of nifurpirinol in triggering massive ablation of three different cell types: the pancreatic beta cells, osteoblasts, and dopaminergic neurons. Our results identify nifurpirinol as a very potent prodrug for the nitroreductase-mediated ablation system and suggest that its use could be extended to many other cell types, especially if difficult to ablate, or when combined pharmacological treatments are desired.


Asunto(s)
Metronidazol/metabolismo , Nitrofuranos/metabolismo , Nitrorreductasas/metabolismo , Regeneración/fisiología , Pez Cebra , Animales , Animales Modificados Genéticamente , Metronidazol/farmacología , Modelos Animales , Nitrofuranos/farmacología , Nitrorreductasas/genética , Regeneración/efectos de los fármacos
4.
BMC Biol ; 15(1): 21, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28327131

RESUMEN

BACKGROUND: Defining the transcriptome and the genetic pathways of pancreatic cells is of great interest for elucidating the molecular attributes of pancreas disorders such as diabetes and cancer. As the function of the different pancreatic cell types has been maintained during vertebrate evolution, the comparison of their transcriptomes across distant vertebrate species is a means to pinpoint genes under strong evolutionary constraints due to their crucial function, which have therefore preserved their selective expression in these pancreatic cell types. RESULTS: In this study, RNA-sequencing was performed on pancreatic alpha, beta, and delta endocrine cells as well as the acinar and ductal exocrine cells isolated from adult zebrafish transgenic lines. Comparison of these transcriptomes identified many novel markers, including transcription factors and signaling pathway components, specific for each cell type. By performing interspecies comparisons, we identified hundreds of genes with conserved enriched expression in endocrine and exocrine cells among human, mouse, and zebrafish. This list includes many genes known as crucial for pancreatic cell formation or function, but also pinpoints many factors whose pancreatic function is still unknown. A large set of endocrine-enriched genes can already be detected at early developmental stages as revealed by the transcriptomic profiling of embryonic endocrine cells, indicating a potential role in cell differentiation. The actual involvement of conserved endocrine genes in pancreatic cell differentiation was demonstrated in zebrafish for myt1b, whose invalidation leads to a reduction of alpha cells, and for cdx4, selectively expressed in endocrine delta cells and crucial for their specification. Intriguingly, comparison of the endocrine alpha and beta cell subtypes from human, mouse, and zebrafish reveals a much lower conservation of the transcriptomic signatures for these two endocrine cell subtypes compared to the signatures of pan-endocrine and exocrine cells. These data suggest that the identity of the alpha and beta cells relies on a few key factors, corroborating numerous examples of inter-conversion between these two endocrine cell subtypes. CONCLUSION: This study highlights both evolutionary conserved and species-specific features that will help to unveil universal and fundamental regulatory pathways as well as pathways specific to human and laboratory animal models such as mouse and zebrafish.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Genes Reguladores , Páncreas/citología , Páncreas/metabolismo , Células Acinares/citología , Células Acinares/metabolismo , Animales , Diferenciación Celular/genética , Separación Celular , Embrión no Mamífero/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Marcadores Genéticos , Glucagón/metabolismo , Células Secretoras de Glucagón/citología , Células Secretoras de Glucagón/metabolismo , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Ratones , Mutación/genética , Análisis de Componente Principal , Especificidad de la Especie , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Pez Cebra/genética
5.
BMC Biol ; 13: 70, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26329351

RESUMEN

BACKGROUND: In contrast to mammals, the zebrafish has the remarkable capacity to regenerate its pancreatic beta cells very efficiently. Understanding the mechanisms of regeneration in the zebrafish and the differences with mammals will be fundamental to discovering molecules able to stimulate the regeneration process in mammals. To identify the pancreatic cells able to give rise to new beta cells in the zebrafish, we generated new transgenic lines allowing the tracing of multipotent pancreatic progenitors and endocrine precursors. RESULTS: Using novel bacterial artificial chromosome transgenic nkx6.1 and ascl1b reporter lines, we established that nkx6.1-positive cells give rise to all the pancreatic cell types and ascl1b-positive cells give rise to all the endocrine cell types in the zebrafish embryo. These two genes are initially co-expressed in the pancreatic primordium and their domains segregate, not as a result of mutual repression, but through the opposite effects of Notch signaling, maintaining nkx6.1 expression while repressing ascl1b in progenitors. In the adult zebrafish, nkx6.1 expression persists exclusively in the ductal tree at the tip of which its expression coincides with Notch active signaling in centroacinar/terminal end duct cells. Tracing these cells reveals that they are able to differentiate into other ductal cells and into insulin-expressing cells in normal (non-diabetic) animals. This capacity of ductal cells to generate endocrine cells is supported by the detection of ascl1b in the nkx6.1:GFP ductal cell transcriptome. This transcriptome also reveals, besides actors of the Notch and Wnt pathways, several novel markers such as id2a. Finally, we show that beta cell ablation in the adult zebrafish triggers proliferation of ductal cells and their differentiation into insulin-expressing cells. CONCLUSIONS: We have shown that, in the zebrafish embryo, nkx6.1+ cells are bona fide multipotent pancreatic progenitors, while ascl1b+ cells represent committed endocrine precursors. In contrast to the mouse, pancreatic progenitor markers nkx6.1 and pdx1 continue to be expressed in adult ductal cells, a subset of which we show are still able to proliferate and undergo ductal and endocrine differentiation, providing robust evidence of the existence of pancreatic progenitor/stem cells in the adult zebrafish. Our findings support the hypothesis that nkx6.1+ pancreatic progenitors contribute to beta cell regeneration. Further characterization of these cells will open up new perspectives for anti-diabetic therapies.


Asunto(s)
Células Secretoras de Insulina/fisiología , Células Madre Multipotentes/fisiología , Páncreas/fisiología , Regeneración/fisiología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Células Secretoras de Insulina/citología , Células Madre Multipotentes/citología , Páncreas/citología , Receptores Notch/genética , Receptores Notch/metabolismo , Factores de Transcripción/genética , Vía de Señalización Wnt/genética , Pez Cebra , Proteínas de Pez Cebra/genética
6.
Dev Biol ; 376(2): 187-97, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23352790

RESUMEN

Notch signaling has a fundamental role in stem cell maintenance and in cell fate choice in the intestine of different species. Canonically, Notch signaling represses the expression of transcription factors of the achaete-scute like (ASCL) or atonal related protein (ARP) families. Identifying the ARP/ASCL genes expressed in the gastrointestinal tract is essential to build the regulatory cascade controlling the differentiation of gastrointestinal progenitors into the different intestinal cell types. The expression of the ARP/ASCL factors was analyzed in zebrafish to identify, among all the ARP/ASCL factors found in the zebrafish genome, those expressed in the gastrointestinal tract. ascl1a was found to be the earliest factor detected in the intestine. Loss-of-function analyses using the pia/ascl1a mutant, revealed that ascl1a is crucial for the differentiation of all secretory cells. Furthermore, we identify a battery of transcription factors expressed during secretory cell differentiation and downstream of ascl1a. Finally, we show that the repression of secretory cell fate by Notch signaling is mediated by the inhibition of ascl1a expression. In conclusion, this work identifies Ascl1a as a key regulator of the secretory cell lineage in the zebrafish intestine, playing the same role as Atoh1 in the mouse intestine. This highlights the diversity in the ARP/ASCL family members acting as cell fate determinants downstream from Notch signaling.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Regulación del Desarrollo de la Expresión Génica , Intestinos/embriología , Mutación , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Linaje de la Célula , Proliferación Celular , Células Enteroendocrinas/citología , Modelos Biológicos , Receptores Notch/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción , Pez Cebra
7.
BMC Biol ; 11: 78, 2013 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-23835295

RESUMEN

BACKGROUND: NEUROG3 is a key regulator of pancreatic endocrine cell differentiation in mouse, essential for the generation of all mature hormone producing cells. It is repressed by Notch signaling that prevents pancreatic cell differentiation by maintaining precursors in an undifferentiated state. RESULTS: We show that, in zebrafish, neurog3 is not expressed in the pancreas and null neurog3 mutant embryos do not display any apparent endocrine defects. The control of endocrine cell fate is instead fulfilled by two basic helix-loop-helix factors, Ascl1b and Neurod1, that are both repressed by Notch signaling. ascl1b is transiently expressed in the mid-trunk endoderm just after gastrulation and is required for the generation of the first pancreatic endocrine precursor cells. Neurod1 is expressed afterwards in the pancreatic anlagen and pursues the endocrine cell differentiation program initiated by Ascl1b. Their complementary role in endocrine differentiation of the dorsal bud is demonstrated by the loss of all hormone-secreting cells following their simultaneous inactivation. This defect is due to a blockage of the initiation of endocrine cell differentiation. CONCLUSIONS: This study demonstrates that NEUROG3 is not the unique pancreatic endocrine cell fate determinant in vertebrates. A general survey of endocrine cell fate determinants in the whole digestive system among vertebrates indicates that they all belong to the ARP/ASCL family but not necessarily to the Neurog3 subfamily. The identity of the ARP/ASCL factor involved depends not only on the organ but also on the species. One could, therefore, consider differentiating stem cells into insulin-producing cells without the involvement of NEUROG3 but via another ARP/ASCL factor.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linaje de la Célula , Células Endocrinas/citología , Proteínas del Tejido Nervioso/metabolismo , Páncreas/citología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Células Endocrinas/efectos de los fármacos , Células Endocrinas/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Proteínas HMGB/metabolismo , Ratones , Modelos Biológicos , Morfolinos/farmacología , Mutación/genética , Proteínas del Tejido Nervioso/genética , Páncreas/efectos de los fármacos , Páncreas/embriología , Páncreas/metabolismo , Filogenia , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción , Pez Cebra/genética , Proteínas de Pez Cebra/genética
8.
Dev Biol ; 366(2): 268-78, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22537488

RESUMEN

Recent zebrafish studies have shown that the late appearing pancreatic endocrine cells are derived from pancreatic ducts but the regulatory factors involved are still largely unknown. Here, we show that the zebrafish sox9b gene is expressed in pancreatic ducts where it labels the pancreatic Notch-responsive cells previously shown to be progenitors. Inactivation of sox9b disturbs duct formation and impairs regeneration of beta cells from these ducts in larvae. sox9b expression in the midtrunk endoderm appears at the junction of the hepatic and ventral pancreatic buds and, by the end of embryogenesis, labels the hepatopancreatic ductal system as well as the intrapancreatic and intrahepatic ducts. Ductal morphogenesis and differentiation are specifically disrupted in sox9b mutants, with the dysmorphic hepatopancreatic ducts containing misdifferentiated hepatocyte-like and pancreatic-like cells. We also show that maintenance of sox9b expression in the extrapancreatic and intrapancreatic ducts requires FGF and Notch activity, respectively, both pathways known to prevent excessive endocrine differentiation in these ducts. Furthermore, beta cell recovery after specific ablation is severely compromised in sox9b mutant larvae. Our data position sox9b as a key player in the generation of secondary endocrine cells deriving from pancreatic ducts in zebrafish.


Asunto(s)
Hepatopáncreas/embriología , Islotes Pancreáticos/fisiología , Factor de Transcripción SOX9/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Factores de Crecimiento de Fibroblastos/fisiología , Hepatopáncreas/fisiología , Páncreas/citología , Páncreas/fisiología , Receptores Notch/fisiología , Regeneración , Transducción de Señal , Pez Cebra/fisiología
9.
Development ; 137(2): 203-12, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20040487

RESUMEN

The transcription factor neurogenin 3 (Neurog3 or Ngn3) controls islet cell fate specification in multipotent pancreatic progenitor cells in the mouse embryo. However, our knowledge of the genetic programs implemented by Ngn3, which control generic and islet subtype-specific properties, is still fragmentary. Gene expression profiling in isolated Ngn3-positive progenitor cells resulted in the identification of the uncharacterized winged helix transcription factor Rfx6. Rfx6 is initially expressed broadly in the gut endoderm, notably in Pdx1-positive cells in the developing pancreatic buds, and then becomes progressively restricted to the endocrine lineage, suggesting a dual function in both endoderm development and islet cell differentiation. Rfx6 is found in postmitotic islet progenitor cells in the embryo and is maintained in all developing and adult islet cell types. Rfx6 is dependent on Ngn3 and acts upstream of or in parallel with NeuroD, Pax4 and Arx transcription factors during islet cell differentiation. In zebrafish, the Rfx6 ortholog is similarly found in progenitors and hormone expressing cells of the islet lineage. Loss-of-function studies in zebrafish revealed that rfx6 is required for the differentiation of glucagon-, ghrelin- and somatostatin-expressing cells, which, in the absence of rfx6, are blocked at the progenitor stage. By contrast, beta cells, whose number is only slightly reduced, were no longer clustered in a compact islet. These data unveil Rfx6 as a novel regulator of islet cell development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción Winged-Helix/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Northern Blotting , Células Cultivadas , Embrión de Mamíferos/metabolismo , Embrión no Mamífero/metabolismo , Células Endocrinas/citología , Células Endocrinas/metabolismo , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ghrelina/metabolismo , Glucagón/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Técnicas In Vitro , Ratones , Proteínas del Tejido Nervioso/genética , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Páncreas/citología , Páncreas/embriología , Páncreas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Somatostatina/metabolismo , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción Winged-Helix/genética , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
BMC Dev Biol ; 12: 37, 2012 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-23244389

RESUMEN

BACKGROUND: Genetic studies in mouse have demonstrated the crucial function of PAX4 in pancreatic cell differentiation. This transcription factor specifies ß- and δ-cell fate at the expense of α-cell identity by repressing Arx gene expression and ectopic expression of PAX4 in α-cells is sufficient to convert them into ß-cells. Surprisingly, no Pax4 orthologous gene can be found in chicken and Xenopus tropicalis raising the question of the function of pax4 gene in lower vertebrates such as in fish. In the present study, we have analyzed the expression and the function of the orthologous pax4 gene in zebrafish. RESULTS: pax4 gene is transiently expressed in the pancreas of zebrafish embryos and is mostly restricted to endocrine precursors as well as to some differentiating δ- and ε-cells but was not detected in differentiating ß-cells. pax4 knock-down in zebrafish embryos caused a significant increase in α-cells number while having no apparent effect on ß- and δ-cell differentiation. This rise of α-cells is due to an up-regulation of the Arx transcription factor. Conversely, knock-down of arx caused to a complete loss of α-cells and a concomitant increase of pax4 expression but had no effect on the number of ß- and δ-cells. In addition to the mutual repression between Arx and Pax4, these two transcription factors negatively regulate the transcription of their own gene. Interestingly, disruption of pax4 RNA splicing or of arx RNA splicing by morpholinos targeting exon-intron junction sites caused a blockage of the altered transcripts in cell nuclei allowing an easy characterization of the arx- and pax4-deficient cells. Such analyses demonstrated that arx knock-down in zebrafish does not lead to a switch of cell fate, as reported in mouse, but rather blocks the cells in their differentiation process towards α-cells. CONCLUSIONS: In zebrafish, pax4 is not required for the generation of the first ß- and δ-cells deriving from the dorsal pancreatic bud, unlike its crucial role in the differentiation of these cell types in mouse. On the other hand, the mutual repression between Arx and Pax4 is observed in both mouse and zebrafish. These data suggests that the main original function of Pax4 during vertebrate evolution was to modulate the number of pancreatic α-cells and its role in ß-cells differentiation appeared later in vertebrate evolution.


Asunto(s)
Embrión no Mamífero/citología , Células Secretoras de Glucagón/citología , Células Secretoras de Glucagón/metabolismo , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Factores de Transcripción Paired Box/metabolismo , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Morfolinos/farmacología , Factores de Transcripción Paired Box/biosíntesis , Factores de Transcripción Paired Box/genética , Páncreas/embriología , Empalme del ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/biosíntesis , Proteínas de Pez Cebra/biosíntesis
11.
J Biol Chem ; 285(18): 13863-73, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20177065

RESUMEN

Pax6 is a well conserved transcription factor that contains two DNA-binding domains, a paired domain and a homeodomain, and plays a key role in the development of eye, brain, and pancreas in vertebrates. The recent identification of the zebrafish sunrise mutant, harboring a mutation in the pax6b homeobox and presenting eye abnormalities but no obvious pancreatic defects, raised a question about the role of pax6b in zebrafish pancreas. We show here that pax6b does play an essential role in pancreatic endocrine cell differentiation, as revealed by the phenotype of a novel zebrafish pax6b null mutant and of embryos injected with pax6b morpholinos. Pax6b-depleted embryos have almost no beta cells, a strongly reduced number of delta cells, and a significant increase of epsilon cells. Through the use of various morpholinos targeting intron-exon junctions, pax6b RNA splicing was perturbed at several sites, leading either to retention of intronic sequences or to deletion of exonic sequences in the pax6b transcript. By this strategy, we show that deletion of the Pax6b homeodomain in zebrafish embryos does not disturb pancreas development, whereas lens formation is strongly affected. These data thus provide the explanation for the lack of pancreatic defects in the sunrise pax6b mutants. In addition, partial reduction of Pax6b function in zebrafish embryos performed by injection of small amounts of pax6b morpholinos caused a clear rise in alpha cell number and in glucagon expression, emphasizing the importance of the fine tuning of the Pax6b level to its biological activity.


Asunto(s)
Diferenciación Celular/fisiología , Células Endocrinas/metabolismo , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción Paired Box/metabolismo , Páncreas/embriología , Proteínas Represoras/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Células Endocrinas/citología , Proteínas del Ojo/genética , Glucagón/biosíntesis , Glucagón/genética , Proteínas de Homeodominio/genética , Mutación , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Páncreas/citología , Empalme del ARN/fisiología , Proteínas Represoras/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
12.
Sci Rep ; 11(1): 22717, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34811400

RESUMEN

Retinoic acid (RA) is a key signal for the specification of the pancreas. Still, the gene regulatory cascade triggered by RA in the endoderm remains poorly characterized. In this study, we investigated this regulatory network in zebrafish by combining RNA-seq, RAR ChIP-seq and ATAC-seq assays. By analysing the effect of RA and of the RA receptor (RAR) inverse-agonist BMS493 on the transcriptome and on the chromatin accessibility of endodermal cells, we identified a large set of genes and regulatory regions regulated by RA signalling. RAR ChIP-seq further defined the direct RAR target genes in zebrafish, including hox genes as well as several pancreatic regulators like mnx1, insm1b, hnf1ba and gata6. Comparison of zebrafish and murine RAR ChIP-seq data highlighted the conserved direct target genes and revealed that some RAR sites are under strong evolutionary constraints. Among them, a novel highly conserved RAR-induced enhancer was identified downstream of the HoxB locus and driving expression in the nervous system and in the gut in a RA-dependent manner. Finally, ATAC-seq data unveiled the role of the RAR-direct targets Hnf1ba and Gata6 in opening chromatin at many regulatory loci upon RA treatment.


Asunto(s)
Genómica , Páncreas/efectos de los fármacos , Receptores de Ácido Retinoico/agonistas , Transcriptoma , Tretinoina/farmacología , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Ensamble y Desensamble de Cromatina , Secuenciación de Inmunoprecipitación de Cromatina , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 1-beta del Hepatocito/genética , Factor Nuclear 1-beta del Hepatocito/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Páncreas/embriología , Páncreas/metabolismo , RNA-Seq , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
13.
Dev Biol ; 317(2): 405-16, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18377889

RESUMEN

Sox7 and Sox18 are members of the F-subgroup of Sox transcription factors family and are mostly expressed in endothelial compartments. In humans, dominant mutations in Sox18 are the underlying cause of the severe hypotrichosis-lymphedema-telangiectasia disorder characterized by vascular defects. However little is known about which vasculogenic processes Sox7 and Sox18 regulate in vivo. We cloned the orthologs of Sox7 and Sox18 in zebrafish, analysed their expression pattern and performed functional analyses. Both genes are expressed in the lateral plate mesoderm during somitogenesis. At later stages, Sox18 is expressed in all axial vessels whereas Sox7 expression is mainly restricted to the dorsal aorta. Knockdown of Sox7 or Sox18 alone failed to reveal any phenotype. In contrast, blocking the two genes simultaneously led to embryos displaying dysmorphogenesis of the proximal aorta and arteriovenous shunts, all of which can account for the lack of circulation observed in the trunk and tail. Gene expression analyses performed with general endothelial markers on double morphants revealed that Sox7 and Sox18 are dispensable for the initial specification and positioning of the major trunk vessels. However, morphants display ectopic expression of the venous Flt4 marker in the dorsal aorta and a concomitant reduction of the artery-specific markers EphrinB2a and Gridlock. The striking similarities between the phenotype of Sox7/Sox18 morphants and Gridlock mutants strongly suggest that Sox7 and Sox18 control arterial-venous identity by regulating Gridlock expression.


Asunto(s)
Vasos Sanguíneos/embriología , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Fenotipo , Transducción de Señal/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Clonación Molecular , Análisis por Conglomerados , Cartilla de ADN/genética , Proteínas de Unión al ADN/genética , Hibridación in Situ , Mesodermo/metabolismo , Datos de Secuencia Molecular , Factores de Transcripción SOXF , Análisis de Secuencia de ADN , Proteínas de Pez Cebra/genética
14.
BMC Dev Biol ; 8: 53, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18485195

RESUMEN

BACKGROUND: PAX6 is a transcription factor playing a crucial role in the development of the eye and in the differentiation of the pancreatic endocrine cells as well as of enteroendocrine cells. Studies on the mouse Pax6 gene have shown that sequences upstream from the P0 promoter are required for expression in the lens and the pancreas; but there remain discrepancies regarding the precise location of the pancreatic regulatory elements. RESULTS: Due to genome duplication in the evolution of ray-finned fishes, zebrafish has two pax6 genes, pax6a and pax6b. While both zebrafish pax6 genes are expressed in the developing eye and nervous system, only pax6b is expressed in the endocrine cells of the pancreas. To investigate the cause of this differential expression, we used a combination of in silico, in vivo and in vitro approaches. We show that the pax6b P0 promoter targets expression to endocrine pancreatic cells and also to enteroendocrine cells, retinal neurons and the telencephalon of transgenic zebrafish. Deletion analyses indicate that strong pancreatic expression of the pax6b gene relies on the combined action of two conserved regulatory enhancers, called regions A and C. By means of gel shift assays, we detected binding of the homeoproteins PDX1, PBX and PREP to several cis-elements of these regions. In constrast, regions A and C of the zebrafish pax6a gene are not active in the pancreas, this difference being attributable to sequence divergences within two cis-elements binding the pancreatic homeoprotein PDX1. CONCLUSION: Our data indicate a conserved role of enhancers A and C in the pancreatic expression of pax6b and emphasize the importance of the homeoproteins PBX and PREP cooperating with PDX1, in activating pax6b expression in endocrine pancreatic cells. This study also provides a striking example of how adaptative evolution of gene regulatory sequences upon gene duplication progressively leads to subfunctionalization of the paralogous gene pair.


Asunto(s)
Elementos de Facilitación Genéticos , Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Factores de Transcripción Paired Box/genética , Páncreas/metabolismo , Proteínas Represoras/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Secuencia Conservada , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/química , Proteínas de Homeodominio/metabolismo , Datos de Secuencia Molecular , Complejos Multiproteicos , Factor de Transcripción PAX6 , Páncreas/embriología , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Retina/embriología , Retina/metabolismo , Homología de Secuencia de Ácido Nucleico , Telencéfalo/embriología , Telencéfalo/metabolismo , Transactivadores/química , Transactivadores/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
15.
Gene Expr Patterns ; 6(3): 267-76, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16378757

RESUMEN

PLAG transcription factors play important roles in oncogenesis. To date three members of this subfamily of zinc finger proteins have been identified in humans and mice: PLAG1, PLAGL1 and PLAGL2. In this study, we identified zebrafish orthologs of PLAG1 and PLAGL2 and a novel member of this family, PLAGX. We examined the temporal expression of these three genes by quantitative real time RT-PCR and found that all three genes are maternally provided, expressed at low level during early somitogenesis and, during late somitogenesis and beyond, PLAG expression increases to reach a plateau level around 5 dpf. Whole mount in situ experiments revealed that PLAG1, PLAGL2 and PLAGX display a similar pattern of expression characterized by a low ubiquitous expression overcame by high expression in some restricted compartments such as the ventricular zone of the brain, the pectoral fin buds, the developing pharyngeal arches and the axial vasculature. We show that this pattern resembles the one observed for the proliferative marker PCNA, suggesting that the PLAG genes are expressed more strongly in zones of active proliferation. This hypothesis was proven for the ventricular zone shown to be a highly proliferative zone using the anti-phosphohistone H3 antibody that detects cells in mitosis.


Asunto(s)
Clonación Molecular , Regulación del Desarrollo de la Expresión Génica , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Secuencia Conservada , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Humanos , Inmunohistoquímica , Hibridación in Situ , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Sintenía , Factores de Transcripción/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/química
16.
Gene Expr Patterns ; 6(7): 667-72, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16531124

RESUMEN

The embryonic pronephric kidneys of Xenopus and zebrafish serve as models to study vertebrate nephrogenesis. Recently, multiple subdomains within the Xenopus pronephros have been defined based on the expression of several transport proteins. In contrast, very few studies on the expression of renal transporters have been conducted in zebrafish. We have recently shown that the anterior and posterior segments of the zebrafish pronephric duct may correspond to the proximal tubule and distal tubule/duct compartments of the Xenopus and higher vertebrate pronephros, respectively. Here, we report the embryonic expression pattern of the Na(+)/PO(4) cotransporter SLC20A1 (PiT1/Glvr-1) gene encoding a type III sodium-dependent phosphate cotransporter in Xenopus and zebrafish. In Xenopus, SLC20A1 mRNA is expressed in the somitic mesoderm and lower level of expression is detected in the neural tube, eye, and neural crest cells. From stage 25, SLC20A1 is also detectable in the developing pronephros where expression is restricted to the late portion of the distal pronephric tubules. In zebrafish, SLC20A1 is transcribed from mid-somitogenesis in the anterior part of the pronephros where its expression corresponds to the rostral portion of the expression of other proximal tubule-specific markers. Outside the pronephros, lower level of SLC20A1 expression is also observed in the posterior cardinal and caudal veins. Based on the SLC20A1 expression domain and that of other transporters, four segments have been defined within the zebrafish pronephros. Together, our data reveal that the zebrafish and Xenopus pronephros have non-identical proximo-distal organizations.


Asunto(s)
Riñón/embriología , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Xenopus laevis/embriología , Pez Cebra/embriología , Animales , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Riñón/metabolismo , Especificidad de Órganos , Organogénesis , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
17.
Cancer Res ; 62(5): 1510-7, 2002 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11888928

RESUMEN

Pleomorphic adenoma gene (PLAG) 1, the main translocation target in pleomorphic adenomas of the salivary glands, is a member of a new subfamily of zinc finger proteins comprising the tumor suppressor candidate PLAG-like1 (also called ZAC1 or lost on transformation 1) and PLAGL2. In this report, we show that NIH3T3 cells overexpressing PLAG1 or PLAGL2 display the typical markers of neoplastic transformation: (a) the cells lose cell-cell contact inhibition; (b) show anchorage-independent growth; and (c) are able to induce tumors in nude mice. In contrast, PLAGL1 has been shown to prevent the proliferation of tumor cells by inducing cell cycle arrest and apoptosis. This difference in function is also reflected in their DNA binding, as we show here that the three PLAG proteins, although highly homologous in their DNA-binding domain, bind different DNA sequences in a distinct fashion. Interestingly, the PLAG1- and PLAGL2-induced transformation is accompanied by a drastic up-regulation of insulin-like growth factor-II, which we prove is a target of PLAG1 and PLAGL2. This strongly suggests that the oncogenic capacity of PLAG1 and PLAGL2 is mediated at least partly by activating the insulin-like growth factor-II mitogenic pathway.


Asunto(s)
Transformación Celular Neoplásica , Proteínas de Unión al ADN/genética , ADN/metabolismo , Proto-Oncogenes , Proteínas de Unión al ARN/genética , Factores de Transcripción , Células 3T3 , Secuencia de Aminoácidos , Animales , Línea Celular , Proteínas de Unión al ADN/fisiología , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/fisiología , Ratones , Ratones Desnudos , Datos de Secuencia Molecular , Proteínas de Unión al ARN/fisiología , Regulación hacia Arriba
18.
Oncogene ; 23(1): 179-91, 2004 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-14712223

RESUMEN

PLAG1 is a proto-oncogene whose ectopic expression can trigger the development of pleomorphic adenomas of the salivary glands and of lipoblastomas. As PLAG1 is a transcription factor, able to activate transcription through the binding to the consensus sequence GRGGC(N)(6-8)GGG, its ectopic expression presumably results in the deregulation of target genes, leading to uncontrolled cell proliferation. The identification of PLAG1 target genes is therefore a crucial step in understanding the molecular mechanisms involved in PLAG1-induced tumorigenesis. To this end, we analysed the changes in gene expression caused by the conditional induction of PLAG1 expression in fetal kidney 293 cell lines. Using oligonucleotide microarray analyses of about 12 000 genes, we consistently identified 47 genes induced and 12 genes repressed by PLAG1. One of the largest classes identified as upregulated PLAG1 targets consists of growth factors such as the insulin-like growth factor II and the cytokine-like factor 1. The in silico search for PLAG1 consensus sequences in the promoter of the upregulated genes reveals that a large proportion of them harbor several copies of the PLAG1-binding motif, suggesting that they represent direct PLAG1 targets. Our approach was complemented by the comparison of the expression profiles of pleomorphic adenomas induced by PLAG1 versus normal salivary glands. Concordance between these two sets of experiments pinpointed 12 genes that were significantly and consistently upregulated in pleomorphic adenomas and in PLAG1-expressing cells, identifying them as putative PLAG1 targets in these tumors.


Asunto(s)
Adenoma/genética , Proteínas de Unión al ADN/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proto-Oncogenes , Neoplasias de las Glándulas Salivales/genética , Sitios de Unión , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Proto-Oncogenes Mas , Glándulas Salivales/metabolismo
19.
Mol Biol Cell ; 23(5): 945-54, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22219376

RESUMEN

In vertebrates, pancreas and liver arise from bipotential progenitors located in the embryonic gut endoderm. Bone morphogenic protein (BMP) and fibroblast growth factor (FGF) signaling pathways have been shown to induce hepatic specification while repressing pancreatic fate. Here we show that BMP and FGF factors also play crucial function, at slightly later stages, in the specification of the ventral pancreas. By analyzing the pancreatic markers pdx1, ptf1a, and hlxb9la in different zebrafish models of BMP loss of function, we demonstrate that the BMP pathway is required between 20 and 24 h postfertilization to specify the ventral pancreatic bud. Knockdown experiments show that bmp2a, expressed in the lateral plate mesoderm at these stages, is essential for ventral pancreas specification. Bmp2a action is not restricted to the pancreatic domain and is also required for the proper expression of hepatic markers. By contrast, through the analysis of fgf10(-/-); fgf24(-/-) embryos, we reveal the specific role of these two FGF ligands in the induction of the ventral pancreas and in the repression of the hepatic fate. These mutants display ventral pancreas agenesis and ectopic masses of hepatocytes. Overall, these data highlight the dynamic role of BMP and FGF in the patterning of the hepatopancreatic region.


Asunto(s)
Proteína Morfogenética Ósea 2/fisiología , Factor 10 de Crecimiento de Fibroblastos/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Páncreas/embriología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Proteína Morfogenética Ósea 2/genética , Factor 10 de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/genética , Técnicas de Silenciamiento del Gen , Hígado/embriología , Transducción de Señal , Pez Cebra/genética , Proteínas de Pez Cebra/genética
20.
PLoS One ; 7(4): e34671, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22496837

RESUMEN

Forward genetics using zebrafish is a powerful tool for studying vertebrate development through large-scale mutagenesis. Nonetheless, the identification of the molecular lesion is still laborious and involves time-consuming genetic mapping. Here, we show that high-throughput sequencing of the whole zebrafish genome can directly locate the interval carrying the causative mutation and at the same time pinpoint the molecular lesion. The feasibility of this approach was validated by sequencing the m1045 mutant line that displays a severe hypoplasia of the exocrine pancreas. We generated 13 Gb of sequence, equivalent to an eightfold genomic coverage, from a pool of 50 mutant embryos obtained from a map-cross between the AB mutant carrier and the WIK polymorphic strain. The chromosomal region carrying the causal mutation was localized based on its unique property to display high levels of homozygosity among sequence reads as it derives exclusively from the initial AB mutated allele. We developed an algorithm identifying such a region by calculating a homozygosity score along all chromosomes. This highlighted an 8-Mb window on chromosome 5 with a score close to 1 in the m1045 mutants. The sequence analysis of all genes within this interval revealed a nonsense mutation in the snapc4 gene. Knockdown experiments confirmed the assertion that snapc4 is the gene whose mutation leads to exocrine pancreas hypoplasia. In conclusion, this study constitutes a proof-of-concept that whole-genome sequencing is a fast and effective alternative to the classical positional cloning strategies in zebrafish.


Asunto(s)
Alquilantes/toxicidad , Mapeo Cromosómico/métodos , Análisis Mutacional de ADN/métodos , Etilnitrosourea/toxicidad , Homocigoto , Pez Cebra/genética , Algoritmos , Animales , Secuencia de Bases , Codón sin Sentido , Femenino , Masculino , Datos de Secuencia Molecular , Páncreas Exocrino , Polimorfismo de Nucleótido Simple/efectos de los fármacos , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA