Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bioorg Chem ; 145: 107231, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394919

RESUMEN

The binding of human galectins by glycomimetic inhibitors is a promising therapeutic approach. The structurally distinct group of tandem-repeat galectins has scarcely been studied so far, and there is hardly any knowledge on their ligand specificity or their inhibitory potential, particularly concerning non-natural carbohydrates. Here, we present the synthesis of a library of seven 3-O-disubstituted thiodigalactoside-derived glycomimetics and their affinity to two tandem-repeat galectins, Gal-8 and Gal-9. The straightforward synthesis of these glycomimetics involved dibutyltin oxide-catalyzed 3,3́-O-disubstitution of commercially available unprotected thiodigalactoside, and conjugation of various aryl substituents by copper-catalyzed Huisgen azide-alkyne cycloaddition (CuAAC). The inhibitory potential of the prepared glycomimetics for Gal-8 and Gal-9 was assessed, and compared with the established galectins Gal-1 and Gal-3. The introduction of C-3 substituents resulted in an over 40-fold increase in affinity compared with unmodified TDG. The structure-affinity relations within the studied series were discussed using molecular modeling. Furthermore, the prepared glycomimetics were shown to scavenge Gal-8 and Gal-9 from the surface of cancer cells. This pioneering study on the synthetic inhibitors especially of Gal-9 identified lead compounds that may be used in further biomedical research.


Asunto(s)
Galectinas , Tiogalactósidos , Humanos , Unión Proteica , Galectinas/metabolismo , Tiogalactósidos/química , Carbohidratos/química
2.
Molecules ; 28(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37241779

RESUMEN

Galectins are carbohydrate-binding lectins that modulate the proliferation, apoptosis, adhesion, or migration of cells by cross-linking glycans on cell membranes or extracellular matrix components. Galectin-4 (Gal-4) is a tandem-repeat-type galectin expressed mainly in the epithelial cells of the gastrointestinal tract. It consists of an N- and a C-terminal carbohydrate-binding domain (CRD), each with distinct binding affinities, interconnected with a peptide linker. Compared to other more abundant galectins, the knowledge of the pathophysiology of Gal-4 is sparse. Its altered expression in tumor tissue is associated with, for example, colon, colorectal, and liver cancers, and it increases in tumor progression, and metastasis. There is also very limited information on the preferences of Gal-4 for its carbohydrate ligands, particularly with respect to Gal-4 subunits. Similarly, there is virtually no information on the interaction of Gal-4 with multivalent ligands. This work shows the expression and purification of Gal-4 and its subunits and presents a structure-affinity relationship study with a library of oligosaccharide ligands. Furthermore, the influence of multivalency is demonstrated in the interaction with a model lactosyl-decorated synthetic glycoconjugate. The present data may be used in biomedical research for the design of efficient ligands of Gal-4 with diagnostic or therapeutic potential.


Asunto(s)
Galectina 4 , Neoplasias , Humanos , Galectinas/química , Oligosacáridos/química , Carbohidratos , Ligandos
3.
Chemistry ; 26(43): 9620-9631, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32368810

RESUMEN

The synthesis of tailored bioactive carbohydrates usually comprises challenging (de)protection steps, which lowers synthetic yields and increases time demands. We present here a regioselective single-step introduction of benzylic substituents at 3-hydroxy groups of ß-d-galactopyranosyl-(1→1)-thio-ß-d-galactopyranoside (TDG) employing dibutyltin oxide in good yields. These glycomimetics act as inhibitors of galectins-human lectins, which are biomedically attractive targets for therapeutic inhibition in, for example, cancerogenesis. The affinity of the prepared glycomimetics to galectin-1 and galectin-3 was studied in enzyme-linked immunosorbent (ELISA)-type assays and their potential to inhibit galectin binding on the cell surface was shown. We used our original in vivo biotinylated galectin constructs for easy detection by flow cytometry. The results of the biological experiments were compared with data from molecular modeling with both galectins. The present work reveals a facile and elegant synthetic route for the preparation of TDG-derived glycomimetics that exhibit differing selectivity and affinity to galectins depending on the choice of 3-O-substitution.


Asunto(s)
Carbohidratos/química , Galectina 1/química , Galectina 3/química , Galectinas/química , Tiogalactósidos/química , Proteínas Sanguíneas , Galactosa , Galectina 1/metabolismo , Galectina 3/metabolismo , Galectinas/metabolismo , Humanos , Modelos Moleculares
4.
J Med Chem ; 67(11): 9214-9226, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38829964

RESUMEN

Pulmonary hypertension is a cardiovascular disease with a low survival rate. The protein galectin-3 (Gal-3) binding ß-galactosides of cellular glycoproteins plays an important role in the onset and development of this disease. Carbohydrate-based drugs that target Gal-3 represent a new therapeutic strategy in the treatment of pulmonary hypertension. Here, we present the synthesis of novel hydrophilic glycopolymer inhibitors of Gal-3 based on a polyoxazoline chain decorated with carbohydrate ligands. Biolayer interferometry revealed a high binding affinity of these glycopolymers to Gal-3 in the subnanomolar range. In the cell cultures of cardiac fibroblasts and pulmonary artery smooth muscle cells, the most potent glycopolymer 18 (Lac-high) caused a decrease in the expression of markers of tissue remodeling in pulmonary hypertension. The glycopolymers were shown to penetrate into the cells. In a biodistribution and pharmacokinetics study in rats, the glycopolymers accumulated in heart and lung tissues, which are most affected by pulmonary hypertension.


Asunto(s)
Galectina 3 , Hipertensión Pulmonar , Animales , Galectina 3/antagonistas & inhibidores , Galectina 3/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Ratas , Humanos , Distribución Tisular , Masculino , Biomarcadores , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Polímeros/química , Polímeros/farmacología , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo
5.
J Med Chem ; 65(5): 3866-3878, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35157467

RESUMEN

Galectin-3 (Gal-3) participates in many cancer-related metabolic processes. The inhibition of overexpressed Gal-3 by, e.g., ß-galactoside-derived inhibitors is hence promising for cancer treatment. The multivalent presentation of such inhibitors on a suitable biocompatible carrier can enhance the overall affinity to Gal-3 and favorably modify the interaction with Gal-3-overexpressing cells. We synthesized a library of C-3 aryl-substituted thiodigalactoside inhibitors and their multivalent N-(2-hydroxypropyl)methacrylamide (HPMA)-based counterparts with two different glycomimetic contents. Glycopolymers with a higher content of glycomimetic exhibited a higher affinity to Gal-3 as assessed by ELISA and biolayer interferometry. Among them, four candidates (with 4-acetophenyl, 4-cyanophenyl, 4-fluorophenyl, and thiophen-3-yl substitution) were selected for further evaluation in cancer-related experiments in cell cultures. These glycopolymers inhibited Gal-3-induced processes in cancer cells. The cyanophenyl-substituted glycopolymer exhibited the strongest antiproliferative, antimigratory, antiangiogenic, and immunoprotective properties. The prepared glycopolymers appear to be prospective modulators of the tumor microenvironment applicable in the therapy of Gal-3-associated cancers.


Asunto(s)
Galectina 3 , Tiogalactósidos , Galectina 3/metabolismo , Estudios Prospectivos , Tiogalactósidos/farmacología
6.
Chem Commun (Camb) ; 55(20): 2900-2903, 2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30698594

RESUMEN

Hybrid nanocomposites are multiphase systems with a wide range of applications. Some nanocomposites are water insoluble thereby preventing several applications. Thus, we prepared telechelic PEO with glucose molecules to form water-soluble lamellar nanostructures by co-assembly with metallacarborane. The lamellas formed by PEO/metallacarborane decorated by glucose molecules on the surface can serve as delivery agents for boron clusters and benzoxaboroles.

7.
Nanoscale ; 10(18): 8428-8442, 2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29666865

RESUMEN

The present study describes the synthesis, self-assembly and responsiveness to glucose and lactic acid of biocompatible and biodegradable block copolymer micelles using phenylboronic ester as the linkage between hydrophobic poly(ε-caprolactone) (PCL) and hydrophilic poly(ethylene oxide) (PEO). The PCL block with pendant phenylboronic acid (PCLBA) was synthesized by combining ε-caprolactone (ε-CL) ring-opening polymerisation (ROP), using 4-hydroxymethyl(phenylboronic) acid pinacolate as the initiator, and pinacol deprotection. The glucose-terminated PEO (PEOGlc) was prepared by 1,3-dipolar, Cu(i)-catalysed, alkyne-azide cycloaddition of α-methoxy-ω-propargyl poly(ethylene oxide) and 1-azido-1-deoxy-d-glucopyranose. All new compounds were evaluated by 1H NMR spectroscopy and by SEC analysis. PCLBA and PEOGlc blocks were linked in NaOH acetone solution, which was indirectly confirmed by Alizarin Red S fluorescence and directly by 1H NMR spectroscopy. Dialysis against Milli-Q water induced the self-assembly of PCLBA-b-PEOGlc nanoparticles, which were characterised by static (SLS) and dynamic (DLS) light scattering and by cryogenic transmission electron microscopy (cryo-TEM). Furthermore, the microscopic properties of the charged interface between the hydrophobic PCLBA core and the hydrophilic PEOGlc shell were examined by electrophoretic light scattering (zeta potential) and by fluorescence spectroscopy using the fluorescent probe 5-(N-dodecanoyl)aminofluorescein (DAF) as a pH indicator. Subsequently, the nanoparticles were transferred to a phosphate buffer saline (PBS) solution supplemented with different concentrations of glucose to simulate the physiological conditions in blood or lactic acid to simulate acidic cytosolic or endosomal conditions in tumour cells. Adding a surplus of glucose or lactic acid, which competitively binds to PBA, removes the stabilising hydrophilic PEOGlc blocks, thereby triggering marked nanoparticle aggregation. However, the rate of aggregation induced by lactic acid is considerably faster than that induced by glucose, as confirmed by light scattering. Thus, this novel block copolymer may contribute to the field of selective, lactic acid- and/or glucose-responsive drug delivery vehicle design under both pathological and physiological conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA