Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 19(11): e1011029, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38011217

RESUMEN

Mammalian evolution has been influenced by viruses for millions of years, leaving signatures of adaptive evolution within genes encoding for viral interacting proteins. Synaptogyrin-2 (SYNGR2) is a transmembrane protein implicated in promoting bacterial and viral infections. A genome-wide association study of pigs experimentally infected with porcine circovirus type 2b (PCV2b) uncovered a missense mutation (SYNGR2 p.Arg63Cys) associated with viral load. In this study, CRISPR/Cas9-mediated gene editing of the porcine kidney 15 (PK15, wtSYNGR2+p.63Arg) cell line generated clones homozygous for the favorable SYNGR2 p.63Cys allele (emSYNGR2+p.63Cys). Infection of edited clones resulted in decreased PCV2 replication compared to wildtype PK15 (P<0.05), with consistent effects across genetically distinct PCV2b and PCV2d isolates. Sequence analyses of wild and domestic pigs (n>700) revealed the favorable SYNGR2 p.63Cys allele is unique to domestic pigs and more predominant in European than Asian breeds. A haplotype defined by the SYNGR2 p.63Cys allele was likely derived from an ancestral haplotype nearly fixed within European (0.977) but absent from Asian wild boar. We hypothesize that the SYNGR2 p.63Cys allele arose post-domestication in ancestral European swine. Decreased genetic diversity in homozygotes for the SYNGR2 p.63Cys allele compared to SYNGR2 p.63Arg, corroborates a rapid increase in frequency of SYGNR2 p.63Cys via positive selection. Signatures of adaptive evolution across mammalian species were also identified within SYNGR2 intraluminal loop domains, coinciding with the location of SYNGR2 p.Arg63Cys. Therefore, SYNGR2 may reflect a novel component of the host-virus evolutionary arms race across mammals with SYNGR2 p.Arg63Cys representing a species-specific example of putative adaptive evolution.


Asunto(s)
Circovirus , Enfermedades de los Porcinos , Porcinos/genética , Animales , Circovirus/genética , Sinaptogirinas/genética , Estudio de Asociación del Genoma Completo , Enfermedades de los Porcinos/genética , Genotipo , Sus scrofa/genética
2.
Arch Virol ; 169(8): 170, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080100

RESUMEN

African swine fever virus (ASFV) has spread through many countries and regions worldwide, causing significant losses. Timely detection of ASFV-infected pigs is crucial for disease control. In this study, we assessed the performance of two pen-side tests: a portable real-time PCR (qPCR) test for detecting viral genomic DNA and a lateral flow immunoassay (LFIA) for detecting viral antigens. To determine the time from infection to the earliest detection, 10 ASFV-seronegative pigs were inoculated intramuscularly with 104.0 hemadsorption dose 50 of a highly virulent ASFV strain. Whole blood and oral swab samples were alternately collected from each group of five pigs daily until all succumbed to the infection. Samples were promptly subjected to the two pen-side tests upon collection, and a subset was transported to a veterinary diagnostic laboratory for analysis using a reference qPCR assay. Viral genomic DNA was consistently detected by the reference qPCR assay in all blood samples from 2 days postinfection (dpi), preceding the onset of clinical signs, and in oral swabs from 4 dpi onwards. The portable qPCR test demonstrated comparable performance to the reference qPCR assay for both whole blood and oral swab samples. The LFIA exhibited 100% specificity when testing with whole blood samples but showed reduced sensitivity, particularly for blood samples collected early or late after infection. The antigen test did not perform well with oral swabs.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad , Animales , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/diagnóstico , Fiebre Porcina Africana/virología , Porcinos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , ADN Viral/genética , Inmunoensayo/métodos , Antígenos Virales/análisis
3.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36660929

RESUMEN

Virus survival on fomites may represent a vehicle for transmission to humans. This study was conducted to optimize and validate a recovery method for the porcine respiratory and reproductive syndrome virus (PRRSV), a potential SARS-CoV-2 surrogate, from stainless steel. Coupons (1.5 × 1.5 cm) inoculated with ca. 7 logs TCID50 of PRRSV were dried for 15 min at room temperature, followed by incubation at 4°C and 35% relative humidity. After 1 h and 24 h, the coupons were processed by four different methods: vortex in DMEM media, vortex in DMEM media with beads, vortex in elution buffer, and shake in elution buffer. The rinsates were processed for titration using the TCID50 method in the MARC-145 cell line. All four methods were equally effective to recover the virus from the soiled SS surfaces (> 79% recovery). The amount of infectious virus recovered after 24 h was similar (P > 0.05) to that recovered after 1 h, indicating that the virus was stable at 4°C for up to 24 h. Using an elution buffer followed by shaking was the least labor-intensive and most economical method. Therefore, this method will be used for future experiments on PRRSV survival and transfer from food-contact surfaces.


Asunto(s)
COVID-19 , Virus del Síndrome Respiratorio y Reproductivo Porcino , Humanos , Animales , Porcinos , SARS-CoV-2 , Acero Inoxidable , Fómites
4.
J Virol ; 95(21): e0105221, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34379512

RESUMEN

Porcine alveolar macrophage (PAM) is one of the primary cellular targets for porcine reproductive and respiratory syndrome virus (PRRSV), but less than 2% of PAMs are infected with the virus during the acute stage of infection. To comparatively analyze the host transcriptional response between PRRSV-infected PAMs and bystander PAMs that remained uninfected but were exposed to the inflammatory milieu of an infected lung, pigs were infected with a PRRSV strain expressing green fluorescent protein (PRRSV-GFP), and GFP+ (PRRSV infected) and GFP- (bystander) cells were sorted for RNA sequencing (RNA-seq). Approximately 4.2% of RNA reads from GFP+ and 0.06% reads from GFP- PAMs mapped to the PRRSV genome, indicating that PRRSV-infected PAMs were effectively separated from bystander PAMs. Further analysis revealed that inflammatory cytokines, interferon-stimulated genes, and antiviral genes were highly upregulated in GFP+ compared to GFP- PAMs. Importantly, negative immune regulators, including NF-κB inhibitors (NFKBIA, NFKBID, NFKBIZ, and TNFAIP3) and T-cell exhaustion markers (programmed death ligand-1 [PD-L1], PD-L2, interleukin-10 [IL-10], IDO1, and transforming growth factor ß2 [TGFB2]) were highly upregulated in GFP+ cells compared to GFP- cells. By using an in situ hybridization assay, RNA transcripts of tumor necrosis factor (TNF) and NF-κB inhibitors were detected in PRRSV-infected PAMs cultured ex vivo and lung sections of PRRSV-infected pigs during the acute stage of infection. Collectively, the results suggest that PRRSV infection upregulates expression of negative immune regulators and T-cell exhaustion markers in PAMs to modulate the host immune response. Our findings provide further insight into PRRSV immunopathogenesis. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is widespread in many swine-producing countries, causing substantial economic losses to the swine industry. Porcine alveolar macrophage (PAM) is considered the primary target for PRRSV replication in pigs. However, less than 2% of PAMs from acutely infected pigs are infected with the virus. In the present study, we utilized a PRRSV strain expressing green fluorescent protein to infect pigs and sorted infected and bystander PAMs from the pigs during the acute stage of infection for transcriptome analysis. PRRSV-infected PAMs showed a distinctive gene expression profile and contained many uniquely activated pathways compared to bystander PAMs. Interestingly, upregulated expression of NF-κB signaling inhibitors and T-cell exhaustion molecules were observed in PRRSV-infected PAMs. Our findings provide additional knowledge on the mechanisms that PRRSV employs to modulate the host immune system.


Asunto(s)
Inmunidad/genética , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/virología , Síndrome Respiratorio y de la Reproducción Porcina/fisiopatología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Linfocitos T/inmunología , Animales , Perfilación de la Expresión Génica , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Análisis de Secuencia de ARN , Transducción de Señal , Porcinos , Transcriptoma , Regulación hacia Arriba
5.
Nat Mater ; 19(1): 102-108, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31844276

RESUMEN

Early insights into the unique structure and properties of native silk suggested that ß-sheet nanocrystallites in silk would degrade prior to melting when subjected to thermal processing. Since then, canonical approaches for fabricating silk-based materials typically involve solution-derived processing methods, which have inherent limitations with respect to silk protein solubility and stability in solution, and time and cost efficiency. Here we report a thermal processing method for the direct solid-state moulding of regenerated silk into bulk 'parts' or devices with tunable mechanical properties. At elevated temperature and pressure, regenerated amorphous silk nanomaterials with ultralow ß-sheet content undergo thermal fusion via molecular rearrangement and self-assembly assisted by bound water to form a robust bulk material that retains biocompatibility, degradability and machinability. This technique reverses presumptions about the limitations of direct thermal processing of silk into a wide range of new material formats and composite materials with tailored properties and functionalities.


Asunto(s)
Materiales Biocompatibles/química , Nanoestructuras/química , Seda/química , Animales , Bombyx , Fuerza Compresiva , Femenino , Fibroínas/química , Calor , Espectroscopía de Resonancia Magnética , Estructura Secundaria de Proteína , Ratas , Ratas Sprague-Dawley , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Estrés Mecánico , Resistencia a la Tracción , Agua/química , Microtomografía por Rayos X
6.
PLoS Genet ; 14(10): e1007750, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30379811

RESUMEN

Porcine circovirus 2 (PCV2) is a circular single-stranded DNA virus responsible for a group of diseases collectively known as PCV2 Associated Diseases (PCVAD). Variation in the incidence and severity of PCVAD exists between pigs suggesting a host genetic component involved in pathogenesis. A large-scale genome-wide association study of experimentally infected pigs (n = 974), provided evidence of a host genetic role in PCV2 viremia, immune response and growth during challenge. Host genotype explained 64% of the phenotypic variation for overall viral load, with two major Quantitative Trait Loci (QTL) identified on chromosome 7 (SSC7) near the swine leukocyte antigen complex class II locus and on the proximal end of chromosome 12 (SSC12). The SNP having the strongest association, ALGA0110477 (SSC12), explained 9.3% of the genetic and 6.2% of the phenotypic variance for viral load. Dissection of the SSC12 QTL based on gene annotation, genomic and RNA-sequencing, suggested that a missense mutation in the SYNGR2 (SYNGR2 p.Arg63Cys) gene is potentially responsible for the variation in viremia. This polymorphism, located within a protein domain conserved across mammals, results in an amino acid variant SYNGR2 p.63Cys only observed in swine. PCV2 titer in PK15 cells decreased when the expression of SYNGR2 was silenced by specific-siRNA, indicating a role of SYNGR2 in viral replication. Additionally, a PK15 edited clone generated by CRISPR-Cas9, carrying a partial deletion of the second exon that harbors a key domain and the SYNGR2 p.Arg63Cys, was associated with a lower viral titer compared to wildtype PK15 cells (>24 hpi) and supernatant (>48hpi)(P < 0.05). Identification of a non-conservative substitution in this key domain of SYNGR2 suggests that the SYNGR2 p.Arg63Cys variant may underlie the observed genetic effect on viral load.


Asunto(s)
Circovirus/genética , Sinaptogirinas/genética , Sinaptogirinas/metabolismo , Animales , Circovirus/patogenicidad , Replicación del ADN , Estudio de Asociación del Genoma Completo , Porcinos/genética , Sinaptogirinas/fisiología , Carga Viral/genética , Viremia/genética , Replicación Viral/genética
7.
J Virol ; 91(23)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28931684

RESUMEN

Zika virus (ZIKV), a mosquito-transmitted flavivirus responsible for sporadic outbreaks of mild and febrile illness in Africa and Asia, reemerged in the last decade causing serious human diseases, including microcephaly, congenital malformations, and Guillain-Barré syndrome. Although genomic and phylogenetic analyses suggest that genetic evolution may have led to the enhanced virulence of ZIKV, experimental evidence supporting the role of specific genetic changes in virulence is currently lacking. One sequence motif, VNDT, containing an N-linked glycosylation site in the envelope (E) protein, is polymorphic; it is absent in many of the African isolates but present in all isolates from the recent outbreaks. In the present study, we investigated the roles of this sequence motif and glycosylation of the E protein in the pathogenicity of ZIKV. We first constructed a stable full-length cDNA clone of ZIKV in a novel linear vector from which infectious virus was recovered. The recombinant ZIKV generated from the infectious clone, which contains the VNDT motif, is highly pathogenic and causes lethality in a mouse model. In contrast, recombinant viruses from which the VNDT motif is deleted or in which the N-linked glycosylation site is mutated by single-amino-acid substitution are highly attenuated and nonlethal. The mutant viruses replicate poorly in the brains of infected mice when inoculated subcutaneously but replicate well following intracranial inoculation. Our findings provide the first evidence that N-linked glycosylation of the E protein is an important determinant of ZIKV virulence and neuroinvasion.IMPORTANCE The recent emergence of Zika virus (ZIKV) in the Americas has caused major worldwide public health concern. The virus appears to have gained significant pathogenicity, causing serious human diseases, including microcephaly and Guillain-Barré syndrome. The factors responsible for the emergence of pathogenic ZIKV are not understood at this time, although genetic changes have been shown to facilitate virus transmission. All isolates from the recent outbreaks contain an N-linked glycosylation site within the viral envelope (E) protein, whereas many isolates of the African lineage virus lack this site. To elucidate the functional significance of glycosylation in ZIKV pathogenicity, recombinant ZIKVs from infectious clones with or without the glycan on the E protein were generated. ZIKVs lacking the glycan were highly attenuated for the ability to cause mortality in a mouse model and were severely compromised for neuroinvasion. Our studies suggest glycosylation of the E protein is an important factor contributing to ZIKV pathogenicity.


Asunto(s)
Encéfalo/virología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Infección por el Virus Zika/virología , Virus Zika/patogenicidad , Secuencias de Aminoácidos , Animales , Línea Celular , Chlorocebus aethiops , Modelos Animales de Enfermedad , Evolución Molecular , Glicosilación , Humanos , Ratones , Mosquitos Vectores , Mutación , Filogenia , Células Vero , Factores de Virulencia/química , Factores de Virulencia/genética , Virus Zika/genética , Virus Zika/metabolismo
8.
J Virol ; 89(23): 12070-83, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26401031

RESUMEN

UNLABELLED: Current vaccines do not provide sufficient levels of protection against divergent porcine reproductive and respiratory syndrome virus (PRRSV) strains circulating in the field, mainly due to the substantial variation of the viral genome. We describe here a novel approach to generate a PRRSV vaccine candidate that could confer unprecedented levels of heterologous protection against divergent PRRSV isolates. By using a set of 59 nonredundant, full-genome sequences of type 2 PRRSVs, a consensus genome (designated PRRSV-CON) was generated by aligning these 59 PRRSV full-genome sequences, followed by selecting the most common nucleotide found at each position of the alignment. Next, the synthetic PRRSV-CON strain was generated through the use of reverse genetics. PRRSV-CON replicates as efficiently as our prototype PRRSV strain FL12, both in vitro and in vivo. Importantly, when inoculated into pigs, PRRSV-CON confers significantly broader levels of heterologous protection than does wild-type PRRSV. Collectively, our data demonstrate that PRRSV-CON can serve as an excellent candidate for the development of a broadly protective PRRSV vaccine. IMPORTANCE: The extraordinary genetic variation of RNA viruses poses a monumental challenge for the development of broadly protective vaccines against these viruses. To minimize the genetic dissimilarity between vaccine immunogens and contemporary circulating viruses, computational strategies have been developed for the generation of artificial immunogen sequences (so-called "centralized" sequences) that have equal genetic distances to the circulating viruses. Thus far, the generation of centralized vaccine immunogens has been carried out at the level of individual viral proteins. We expand this concept to PRRSV, a highly variable RNA virus, by creating a synthetic PRRSV strain based on a centralized PRRSV genome sequence. This study provides the first example of centralizing the whole genome of an RNA virus to improve vaccine coverage. This concept may be significant for the development of vaccines against genetically variable viruses that require active viral replication in order to achieve complete immune protection.


Asunto(s)
Variación Genética , Inmunidad Heteróloga/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Vacunas Virales/genética , Animales , Secuencia de Bases , Técnica del Anticuerpo Fluorescente Indirecta , Datos de Secuencia Molecular , Pruebas de Neutralización , Alineación de Secuencia , Análisis de Secuencia de ADN , Porcinos , Vacunas Sintéticas/virología , Ensayo de Placa Viral , Vacunas Virales/inmunología
9.
Virus Res ; 343: 199342, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38408646

RESUMEN

African swine fever virus is known to suppress type-I interferon (IFN) responses. The main objective of this study was to screen early-expressed viral genes for their ability to suppress IFN production. Out of 16 early genes examined, I73R exhibited robust suppression of cGAS-STING-induced IFN-ß promoter activities, impeding the function of both IRF3 and NF-κB transcription factors. As a result, I73R obstructed IRF3 nuclear translocation following the treatment of cells with poly(dA:dT), a strong inducer of the cGAS-STING signaling pathway. Although the I73R protein exhibits structural homology with the Zα domain binding to the left-handed helical form of DNA known as Z-DNA, its ability to suppress cGAS-STING induction of IFN-ß was independent of Z-DNA binding activity. Instead, the α3 and ß1 domains of I73R played a significant role in suppressing cGAS-STING induction of IFN-ß. These findings offer insights into the protein's functions and support its role as a virulence factor.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , ADN de Forma Z , Interferón Tipo I , Animales , Porcinos , Virus de la Fiebre Porcina Africana/genética , Interferón beta/genética , Interferón beta/metabolismo , Transducción de Señal/genética , Inmunidad Innata/genética , ADN de Forma Z/metabolismo , Proteínas de la Membrana/metabolismo , Interferón Tipo I/metabolismo , Nucleotidiltransferasas/genética
10.
NPJ Vaccines ; 9(1): 60, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480758

RESUMEN

African Swine Fever (ASF) is a highly lethal viral disease in swine, with mortality rates approaching 100%. The disease has spread to many swine-producing countries, leading to significant economic losses and adversely impacting global food security. Extensive efforts have been directed toward developing effective ASF vaccines. Among the vaccinology approaches tested to date, live-attenuated virus (LAV) vaccines produced by rational deleting virulence genes from virulent African Swine Fever Virus (ASFV) strains have demonstrated promising safety and efficacy in experimental and field conditions. Many gene-deleted LAV vaccine candidates have been generated in recent years. The virulence genes targeted for deletion from the genome of virulent ASFV strains can be categorized into four groups: Genes implicated in viral genome replication and transcription, genes from the multigene family located at both 5' and 3' termini, genes participating in mediating hemadsorption and putative cellular attachment factors, and novel genes with no known functions. Some promising LAV vaccine candidates are generated by deleting a single viral virulence gene, whereas others are generated by simultaneously deleting multiple genes. This article summarizes the recent progress in developing and characterizing gene-deleted LAV vaccine candidates.

11.
mSphere ; : e0028324, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087764

RESUMEN

In 2009, a novel swine-origin H1N1 virus emerged, causing a pandemic. The virus, known as H1N1pdm09, quickly displaced the circulating H1 lineage and became the dominant seasonal influenza A virus subtype infecting humans. Human-to-swine spillovers of the H1N1pdm09 have occurred frequently, and each occurrence has led to sustained transmission of the human-origin H1N1pdm09 within swine populations. In the present study, we developed a lipid nanoparticle-based DNA vaccine (LNP-DNA) containing the hemagglutinin gene of a swine-origin H1N1pdm09. In pigs, this LNP-DNA vaccine induced a robust antibody response after a single intramuscular immunization and protected the pigs against challenge infection with the homologous swine-origin H1N1pdm09 virus. In a mouse model, the LNP-DNA vaccine induced antibody and T-cell responses and protected mice against lethal challenge with a mouse-adapted human-origin H1N1pdm09 virus. These findings demonstrate the potential of the LNP-DNA vaccine to protect against both swine- and human-origin H1N1pdm09 viruses. IMPORTANCE: Swine influenza A virus (IAV) is widespread and causes significant economic losses to the swine industry. Moreover, bidirectional transmission of IAV between swine and humans commonly occurs. Once introduced into the swine population, human-origin IAV often reassorts with endemic swine IAV, resulting in reassortant viruses. Thus, it is imperative to develop a vaccine that is not only effective against IAV strains endemic in swine but also capable of preventing the spillover of human-origin IAV. In this study, we developed a lipid nanoparticle-encapsulated DNA plasmid vaccine (LNP-DNA) that demonstrates efficacy against both swine- and human-origin H1N1 viruses. The LNP-DNA vaccines are non-infectious and non-viable, meeting the criteria to serve as a vaccine platform for rapidly updating vaccines. Collectively, this LNP-DNA vaccine approach holds great potential for alleviating the impact of IAV on the swine industry and preventing the emergence of reassortant IAV strains.

12.
Front Immunol ; 14: 1143451, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37256131

RESUMEN

Current methods of vaccination against swine Influenza A Virus (IAV-S) in pigs are infrequently updated, induce strain-specific responses, and have a limited duration of protection. Here, we characterize the onset and duration of adaptive immune responses after vaccination with an adenoviral-vectored Epigraph vaccine. In this longitudinal study we observed robust and durable antibody responses that remained above protective titers six months after vaccination. We further identified stable levels of antigen-specific T cell responses that remained detectable in the absence of antigen stimulation. Antibody isotyping revealed robust class switching from IgM to IgG induced by Epigraph vaccination, while the commercial comparator vaccine failed to induce strong antibody class switching. Swine were challenged six months after initial vaccination, and Epigraph-vaccinated animals demonstrated significant protection from microscopic lesion development in the trachea and lungs, reduced duration of viral shedding, lower presence of infectious virus and viral antigens in the lungs, and significant recall of antigen-specific T cell responses following challenge. The results obtained from this study are useful in determining the kinetics of adaptive immune responses after vaccination with adjuvanted whole inactivated virus vaccines compared to adenoviral vectored vaccines and contribute to the continued efforts of creating a universal IAV-S vaccine.


Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Animales , Porcinos , Estudios Longitudinales , Pulmón , Adenoviridae/genética , Vacunas de Productos Inactivados
13.
Vaccines (Basel) ; 11(10)2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37896997

RESUMEN

The Influenza A virus of swine (IAV-S) is highly prevalent and causes significant economic losses to swine producers. Due to the highly variable and rapidly evolving nature of the virus, it is critical to develop a safe and versatile vaccine platform that allows for frequent updates of the vaccine immunogens to cope with the emergence of new viral strains. The main objective of this study was to assess the feasibility of using lipid nanoparticles (LNPs) as nanocarriers for delivering DNA plasmid encoding the viral hemagglutinin (HA) gene in pigs. The intramuscular administration of a single dose of the LNP-DNA vaccines resulted in robust systemic and mucosal responses in pigs. Importantly, the vaccinated pigs were fully protected against challenge infection with the homologous IAV-S strain, with only 1 out of 12 vaccinated pigs shedding a low amount of viral genomic RNA in its nasal cavity. No gross or microscopic lesions were observed in the lungs of the vaccinated pigs at necropsy. Thus, the LNP-DNA vaccines are highly effective in protecting pigs against the homologous IAV-S strain and can serve as a promising platform for the rapid development of IAV-S vaccines.

14.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37210473

RESUMEN

Replication of porcine circovirus type 2 (PCV2), an important worldwide swine pathogen, has been demonstrated to be influenced by host genotype. Specifically, a missense DNA polymorphism (SYNGR2 p.Arg63Cys) within the SYNGR2 gene was demonstrated to contribute to variation in PCV2b viral load and subsequent immune response following infection. PCV2 is known to induce immunosuppression leading to an increase in susceptibility to subsequent infections with other viral pathogens such as porcine reproductive and respiratory syndrome virus (PRRSV). In order to assess the role of SYNGR2 p.Arg63Cys in co-infections, pigs homozygous for the favorable SYNGR2 p.63Cys (N = 30) and unfavorable SYNGR2 p.63Arg (N = 29) alleles were infected with PCV2b followed a week later by a challenge with PRRSV. A lower PCV2b viremia (P < 0.001) and PCV2-specific IgM antibodies (P < 0.005) were observed in SYNGR2 p.63Cys compared to SYNGR2 p.63Arg genotypes. No significant differences in PRRSV viremia and specific IgG antibodies were observed between SYNGR2 genotypes. Lung histology score, an indicator of disease severity, was lower in the pigs with SYNGR2 p.63Cys genotypes (P < 0.05). Variation in the lung histology scores within SYNGR2 genotypes suggests that additional factors, environmental and/or genetic, could be involved in disease severity.


Porcine circovirus type 2 (PCV2) is an important virus involved in the onset of a group of severe disease symptoms commonly known as porcine circovirus associated diseases (PCVAD). Vaccination options exist for PCV2, though the severity of PCVAD can be influenced by the presence of additional co-infecting pathogens, such as porcine reproductive and respiratory syndrome virus (PRRSV), for which vaccination is still a challenge. Host genetic resistance is a potential avenue for solving this problem. Previously, a genetic polymorphism in the SYNGR2 gene was found to be associated with PCV2b viremia and immune response. The aim of this study was to determine the impact of this polymorphism in pigs experimentally co-infected with PCV2b and PRRSV. Pigs were weighed, and blood was collected at various days following infection to measure viremia and antibodies. Histological analysis was performed at the experiment completion to assess disease severity in lungs and lymph nodes. The results showed that variation within the SYNGR2 gene is involved in PCV2b disease progression including lung histology scores, but no evidence was seen in response to PRRSV infection.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Coinfección , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Porcinos , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Enfermedades de los Porcinos/patología , Viremia/veterinaria , Coinfección/veterinaria , Anticuerpos Antivirales , Infecciones por Circoviridae/veterinaria , Infecciones por Circoviridae/patología , Circovirus/genética
15.
Vaccines (Basel) ; 11(12)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38140210

RESUMEN

Pichinde virus (PICV) can infect several animal species and has been developed as a safe and effective vaccine vector. Our previous study showed that pigs vaccinated with a recombinant PICV-vectored vaccine expressing the hemagglutinin (HA) gene of an H3N2 influenza A virus of swine (IAV-S) developed virus-neutralizing antibodies and were protected against infection by the homologous H3N2 strain. The objective of the current study was to evaluate the immunogenicity and protective efficacy of a trivalent PICV-vectored vaccine expressing HA antigens from the three co-circulating IAV-S subtypes: H1N1, H1N2, and H3N2. Pigs immunized with the trivalent PICV vaccine developed virus-neutralizing (VN) and hemagglutination inhibition (HI) antibodies against all three matching IAV-S. Following challenge infection with the H1N1 strain, five of the six pigs vaccinated with the trivalent vaccine had no evidence of IAV-S RNA genomes in nasal swabs and bronchoalveolar lavage fluid, while all non-vaccinated control pigs showed high number of copies of IAV-S genomic RNA in these two types of samples. Overall, our results demonstrate that the trivalent PICV-vectored vaccine elicits antibody responses against the three targeted IAV-S strains and provides protection against homologous virus challenges in pigs. Therefore, PICV exhibits the potential to be explored as a viral vector for delivering multiple vaccine antigens in swine.

16.
Vaccines (Basel) ; 11(11)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-38006019

RESUMEN

African swine fever virus (ASFV) is circulating in many swine-producing countries, causing significant economic losses. It is observed that pigs experimentally vaccinated with a live-attenuated virus (LAV) but not a killed virus (KV) vaccine develop solid homologous protective immunity. The objective of this study was to comparatively analyze antibody profiles between pigs vaccinated with an LAV vaccine and those vaccinated with a KV vaccine to identify potential markers of vaccine-induced protection. Thirty ASFV seronegative pigs were divided into three groups: Group 1 received a single dose of an experimental LAV, Group 2 received two doses of an experimental KV vaccine, and Group 3 was kept as a non-vaccinated (NV) control. At 42 days post-vaccination, all pigs were challenged with the parental virulent ASFV strain and monitored for 21 days. All pigs vaccinated with the LAV vaccine survived the challenge. In contrast, eight pigs from the KV group and seven pigs from the NV group died within 14 days post-challenge. Serum samples collected on 41 days post-vaccination were analyzed for their reactivity against a panel of 29 viral structural proteins. The sera of pigs from the LAV group exhibited a strong antibody reactivity against various viral structural proteins, while the sera of pigs in the KV group only displayed weak antibody reactivity against the inner envelope (p32, p54, p12). There was a negative correlation between the intensity of antibody reactivity against five ASFV antigens, namely p12, p14, p15, p32, and pD205R, and the viral DNA titers in the blood of animals after the challenge infection. Thus, antibody reactivities against these five antigens warrant further evaluation as potential indicators of vaccine-induced protection.

17.
J Virol ; 85(11): 5555-64, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21411530

RESUMEN

Passive administration of porcine reproductive and respiratory syndrome virus (PRRSV) neutralizing antibodies (NAbs) can effectively protect pigs against PRRSV infection. However, after PRRSV infection, pigs typically develop a weak and deferred NAb response. One major reason for such a meager NAb response is the phenomenon of glycan shielding involving GP5, a major glycoprotein carrying one major neutralizing epitope. We describe here a type II PRRSV field isolate (PRRSV-01) that is highly susceptible to neutralization and induces an atypically rapid, robust NAb response in vivo. Sequence analysis shows that PRRSV-01 lacks two N-glycosylation sites, normally present in wild-type (wt) PRRSV strains, in two of its envelope glycoproteins, one in GP3 (position 131) and the other in GP5 (position 51). To determine the influence of these missing N-glycosylation sites on the distinct neutralization phenotype of PRRSV-01, a chimeric virus (FL01) was generated by replacing the structural genes of type II PRRSV strain FL12 cDNA infectious clone with those from PRRSV-01. N-glycosylation sites were reintroduced into GP3 and GP5 of FL01, separately or in combination, by site-directed mutagenesis. Reintroduction of the N-glycosylation site in either GP3 or GP5 allowed recovery of in vivo and in vitro glycan shielding capacity, with an additive effect when these sites were reintroduced into both glycoproteins simultaneously. Although the loss of these glycosylation sites has seemingly occurred naturally (presumably by passage through cell cultures), PRRSV-01 virus quickly regains these glycosylation sites through replication in vivo, suggesting that a strong selective pressure is exerted at these sites. Collectively, our data demonstrate the involvement of an N-glycan moiety located in GP3 in glycan shield interference.


Asunto(s)
Glicoproteínas/inmunología , Evasión Inmune , Polisacáridos/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Proteínas Virales/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Glicoproteínas/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación Missense , ARN Viral/genética , Análisis de Secuencia de ADN , Porcinos , Ensayo de Placa Viral , Proteínas Virales/genética
18.
Viruses ; 14(2)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35215993

RESUMEN

To investigate the role of PRRSV nonstructural proteins (nsps) in viral RNA replication and transcription, we generated a cDNA clone of PRRSV strain NCV1 carrying the nanoluciferase (nluc) gene under the control of the transcription regulatory sequence 6 (TRS6) designated as pNCV1-Nluc. Cells transfected with the pNCV1-Nluc DNA plasmid produced an infectious virus and high levels of luciferase activity. Interestingly, cells transfected with mutant pNCV1-Nluc constructs carrying deletions in nsp7 or nsp9 regions also exhibited luciferase activity, although no infectious virus was produced. Further investigation revealed that the cDNA sequences corresponding to the PRRSV 5' untranslated region (UTR) and TRS, when cloned upstream of the reporter gene nluc, were able to drive the expression of the reporter genes in the transfected cells. Luciferase signals from cells transfected with a reporter plasmid carrying PRRSV 5' UTR or TRS sequences upstream of nluc were in the range of 6- to 10-fold higher compared to cells transfected with an empty plasmid carrying nluc only. The results suggest that PRRSV 5' UTR and TRS-B in their cDNA forms possess cryptic eukaryotic promoter activity.


Asunto(s)
Regiones no Traducidas 5'/genética , ADN Complementario/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Regiones Promotoras Genéticas , Animales , Línea Celular , Genes Reporteros , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , ARN Viral/genética , Porcinos , Replicación Viral
19.
Vaccines (Basel) ; 10(6)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35746524

RESUMEN

A randomized control trial was performed over a five-year period to assess the efficacy and antibody response induced by autogenous and commercial vaccine formulations against infectious bovine keratoconjunctivitis (IBK). Calves were randomly assigned each year to one of three arms: an autogenous vaccine treatment that included Moraxella bovis (M. bovis), Moraxella bovoculi, and Mycoplasma bovoculi antigens, a commercial M. bovis vaccine treatment, or a sham vaccine treatment that consisted only of adjuvant. A total of 1198 calves were enrolled in the study. Calves were administered the respective vaccines approximately 21 days apart, just prior to turnout on summer pastures. Treatment effects were analyzed for IBK incidence, retreatment incidence, 205-day adjusted weaning weights, and antibody response to the type IV pilus protein (pili) of M. bovis as measured by a novel indirect enzyme-linked immunosorbent screening assay (ELISA). Calves vaccinated with the autogenous formulation experienced a decreased cumulative incidence of IBK over the entire study compared to those vaccinated with the commercial and sham formulations (24.5% vs. 30.06% vs. 30.3%, respectively, p = 0.25), and had less IBK cases that required retreatment compared to the commercial and sham formulations (21.4% vs. 27.9% vs. 34.3%, respectively, p = 0.15), but these differences were not significant. The autogenous formulation induced a significantly stronger antibody response than the commercial (p = 0.022) and sham formulations (p = 0.001), but antibody levels were not significantly correlated with IBK protection (p = 0.37).

20.
Virus Res ; 307: 198621, 2022 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-34799123

RESUMEN

Antibody profile of pigs naturally infected with a virulent African swine fever virus (ASFV) strain under field conditions was studied. Twenty-three serum samples were collected from pigs surviving a natural ASFV infection: 17 samples from finishing pigs (∼7 months old) and 6 samples from sows (between 12 and 36 months old). Additionally, 24 serum samples were collected from ASFV-naïve pigs to serve as negative controls. All sera from ASFV-surviving pigs tested positive while all sera from control pigs tested negative by two different commercial ELISA kits. Antibody reactivity of each serum sample was simultaneously measured against six selected ASFV antigens including p12, p32, p54, pp62, C-type lectin and CD2v. All ASFV-surviving pigs had antibody against p32, p54 and pp62 while 91.3% surviving pigs had antibody against p12. Only small portions of ASFV-surviving pigs exhibited antibodies against C-type lectin (34.8%) and CD2v (26.1%). While antibodies against p12, p32, p54 and pp62 were similarly detected in both finishing pigs and sows, antibodies against C-type lectin and CD2v were mainly detected in sows but not in finishing pigs. These results suggest a differential humoral immune response to ASFV infection in sows and finishing pigs. Further studies are needed to better understand the nature of immune responses to ASFV infection in different pig populations.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Animales , Anticuerpos Antivirales , Formación de Anticuerpos , Femenino , Lectinas Tipo C , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA