Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Dis ; 107(6): 1690-1696, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36471466

RESUMEN

Carbendazim resistance was detected using 4,701 Fusarium graminearum species complex isolates collected from major wheat-producing regions in China from 2018 to 2020. A total of 348 carbendazim-resistant isolates were identified. The majority of carbendazim-resistant isolates were detected in Jiangsu and Anhui Provinces. In total, 227 and 88 isolates were obtained from each of the Jiangsu and Anhui Provinces, with a high resistance frequency of 41.12 and 20.56%, respectively. The predominant resistant isolates harboring point mutations were F167Y (79.31%), followed by E198Q (16.38%) and F200Y (4.31%). Compared with F. graminearum, F. asiaticum isolates were more likely to produce carbendazim resistance. In this study, we first detected carbendazim-resistant isolates in Hebei, Shaanxi, Sichuan, and Hunan Provinces. In Jiangsu, Anhui, and Zhejiang, the frequency of carbendazim-resistant isolates maintained a high level, resulting in stable carbendazim-resistant populations. We also found the dynamic of carbendazim-resistance frequency in most provinces showed similar trends to the epidemic of Fusarium Head Blight (FHB). Our results facilitate the understanding of the current situation of carbendazim resistance of FHB pathogens and will be helpful for fungicides selection in different wheat-producing areas in China.


Asunto(s)
Carbamatos , Fungicidas Industriales , Fusarium , Bencimidazoles/farmacología , Carbamatos/farmacología , Fusarium/genética , Mutación Puntual , Triticum
2.
Phytopathology ; 112(4): 741-751, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34491796

RESUMEN

Fusarium graminearum is ranked among the five most destructive fungal pathogens that affect agroecosystems. It causes floral diseases in small grain cereals including wheat, barley, and oats, as well as maize and rice. We conducted a systematic review of peer-reviewed studies reporting species within the F. graminearum species complex (FGSC) and created two main data tables. The first contained summarized data from the articles including bibliographic, geographic, methodological (ID methods), host of origin and species, while the second data table contains information about the described strains such as publication, isolate code(s), host/substrate, year of isolation, geographical coordinates, species and trichothecene genotype. Analyses of the bibliographic data obtained from 123 publications from 2000 to 2021 by 498 unique authors and published in 40 journals are summarized. We describe the frequency of species and chemotypes for 16,274 strains for which geographical information was available, either provided as raw data or extracted from the publications, and sampled across six continents and 32 countries. The database and interactive interface are publicly available, allowing for searches, summarization, and mapping of strains according to several criteria including article, country, host, species and trichothecene genotype. The database will be updated as new articles are published and should be useful for guiding future surveys and exploring factors associated with species distribution such as climate and land use. Authors are encouraged to submit data at the strain level to the database, which is accessible at https://fgsc.netlify.app.


Asunto(s)
Fusarium , Tricotecenos , Grano Comestible/microbiología , Fusarium/genética , Enfermedades de las Plantas/microbiología
3.
Plant Dis ; 105(11): 3397-3406, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33944574

RESUMEN

Fusarium crown rot (FCR) is one of the most important wheat diseases in northern China. The main causal agent of FCR, Fusarium pseudograminearum, can produce mycotoxins such as type B trichothecenes. Therefore, FCR could be an additional source of mycotoxin contamination during wheat production. Field inoculation experiments demonstrated that FCR disease severity strongly impacts the distribution pattern of trichothecenes in different wheat tissues. Mycotoxins were mainly observed in lower internodes, and a low amount was detected in the upper parts above the fourth internode. However, high levels of trichothecene accumulation were detected in the upper segments of wheat plants under field conditions, which would threaten the feed production. The variation of mycotoxin content among sampling sites indicated that besides disease severity, other factors like climate, irrigation, and fungicide application may influence the mycotoxin accumulation in wheat. A comprehensive survey of deoxynivalenol (DON) and its derivatives in wheat heads with FCR symptoms in natural fields was conducted at 80 sites in seven provinces in northern China. Much higher levels of mycotoxin were observed compared with inoculation experiments. The mycotoxin content varied greatly among sampling sites, but no significant differences were observed if compared at province level, which indicated the variation is mainly caused by local conditions. Trace amounts of mycotoxin appeared to be translocated to grains, which revealed that FCR infection in natural fields poses a relatively small threat to contamination of grains but a larger one to plant parts that may be used as animal feed. To our knowledge, this is the first report of trichothecene accumulation in wheat stems and heads, as well as grains after FCR infection in natural field conditions. These investigations provide novel insights into food and feed safety risk caused by FCR in northern China.


Asunto(s)
Fusarium , Micotoxinas , Enfermedades de las Plantas , Tricotecenos , Triticum
4.
Nature ; 488(7410): 213-7, 2012 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-22801500

RESUMEN

Bananas (Musa spp.), including dessert and cooking types, are giant perennial monocotyledonous herbs of the order Zingiberales, a sister group to the well-studied Poales, which include cereals. Bananas are vital for food security in many tropical and subtropical countries and the most popular fruit in industrialized countries. The Musa domestication process started some 7,000 years ago in Southeast Asia. It involved hybridizations between diverse species and subspecies, fostered by human migrations, and selection of diploid and triploid seedless, parthenocarpic hybrids thereafter widely dispersed by vegetative propagation. Half of the current production relies on somaclones derived from a single triploid genotype (Cavendish). Pests and diseases have gradually become adapted, representing an imminent danger for global banana production. Here we describe the draft sequence of the 523-megabase genome of a Musa acuminata doubled-haploid genotype, providing a crucial stepping-stone for genetic improvement of banana. We detected three rounds of whole-genome duplications in the Musa lineage, independently of those previously described in the Poales lineage and the one we detected in the Arecales lineage. This first monocotyledon high-continuity whole-genome sequence reported outside Poales represents an essential bridge for comparative genome analysis in plants. As such, it clarifies commelinid-monocotyledon phylogenetic relationships, reveals Poaceae-specific features and has led to the discovery of conserved non-coding sequences predating monocotyledon-eudicotyledon divergence.


Asunto(s)
Evolución Molecular , Genoma de Planta/genética , Musa/genética , Secuencia Conservada/genética , Elementos Transponibles de ADN/genética , Duplicación de Gen/genética , Genes de Plantas/genética , Genotipo , Haploidia , Datos de Secuencia Molecular , Musa/clasificación , Filogenia
5.
BMC Genomics ; 18(1): 735, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-28923029

RESUMEN

BACKGROUND: The Fusarium oxysporum species complex (FOSC) contains several phylogenetic lineages. Phylogenetic studies identified two to three major clades within the FOSC. The mitochondrial sequences are highly informative phylogenetic markers, but have been mostly neglected due to technical difficulties. RESULTS: A total of 61 complete mitogenomes of FOSC strains were de novo assembled and annotated. Length variations and intron patterns support the separation of three phylogenetic species. The variable region of the mitogenome that is typical for the genus Fusarium shows two new variants in the FOSC. The variant typical for Fusarium is found in members of all three clades, while variant 2 is found in clades 2 and 3 and variant 3 only in clade 2. The extended set of loci analyzed using a new implementation of the genealogical concordance species recognition method support the identification of three phylogenetic species within the FOSC. Comparative analysis of the mitogenomes in the FOSC revealed ongoing mitochondrial recombination within, but not between phylogenetic species. CONCLUSIONS: The recombination indicates the presence of a parasexual cycle in F. oxysporum. The obstacles hindering the usage of the mitogenomes are resolved by using next generation sequencing and selective genome assemblers, such as GRAbB. Complete mitogenome sequences offer a stable basis and reference point for phylogenetic and population genetic studies.


Asunto(s)
Fusarium/genética , Genoma Mitocondrial/genética , Recombinación Genética , Secuencia Conservada , Variación Genética , Genómica , Intrones/genética , Filogenia
6.
PLoS Comput Biol ; 12(6): e1004753, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27308864

RESUMEN

GRAbB (Genomic Region Assembly by Baiting) is a new program that is dedicated to assemble specific genomic regions from NGS data. This approach is especially useful when dealing with multi copy regions, such as mitochondrial genome and the rDNA repeat region, parts of the genome that are often neglected or poorly assembled, although they contain interesting information from phylogenetic or epidemiologic perspectives, but also single copy regions can be assembled. The program is capable of targeting multiple regions within a single run. Furthermore, GRAbB can be used to extract specific loci from NGS data, based on homology, like sequences that are used for barcoding. To make the assembly specific, a known part of the region, such as the sequence of a PCR amplicon or a homologous sequence from a related species must be specified. By assembling only the region of interest, the assembly process is computationally much less demanding and may lead to assemblies of better quality. In this study the different applications and functionalities of the program are demonstrated such as: exhaustive assembly (rDNA region and mitochondrial genome), extracting homologous regions or genes (IGS, RPB1, RPB2 and TEF1a), as well as extracting multiple regions within a single run. The program is also compared with MITObim, which is meant for the exhaustive assembly of a single target based on a similar query sequence. GRAbB is shown to be more efficient than MITObim in terms of speed, memory and disk usage. The other functionalities (handling multiple targets simultaneously and extracting homologous regions) of the new program are not matched by other programs. The program is available with explanatory documentation at https://github.com/b-brankovics/grabb. GRAbB has been tested on Ubuntu (12.04 and 14.04), Fedora (23), CentOS (7.1.1503) and Mac OS X (10.7). Furthermore, GRAbB is available as a docker repository: brankovics/grabb (https://hub.docker.com/r/brankovics/grabb/).


Asunto(s)
Genómica/métodos , Programas Informáticos , Algoritmos , Biología Computacional , Simulación por Computador , ADN de Hongos/genética , ADN Ribosómico/genética , Fusarium/genética , Genoma Fúngico , Genoma Mitocondrial , Genómica/estadística & datos numéricos , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos
7.
BMC Genomics ; 17: 670, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27552804

RESUMEN

BACKGROUND: Eukaryotes display remarkable genome plasticity, which can include supernumerary chromosomes that differ markedly from the core chromosomes. Despite the widespread occurrence of supernumerary chromosomes in fungi, their origin, relation to the core genome and the reason for their divergent characteristics are still largely unknown. The complexity of genome assembly due to the presence of repetitive DNA partially accounts for this. RESULTS: Here we use single-molecule real-time (SMRT) sequencing to assemble the genome of a prominent fungal wheat pathogen, Fusarium poae, including at least one supernumerary chromosome. The core genome contains limited transposable elements (TEs) and no gene duplications, while the supernumerary genome holds up to 25 % TEs and multiple gene duplications. The core genome shows all hallmarks of repeat-induced point mutation (RIP), a defense mechanism against TEs, specific for fungi. The absence of RIP on the supernumerary genome accounts for the differences between the two (sub)genomes, and results in a functional crosstalk between them. The supernumerary genome is a reservoir for TEs that migrate to the core genome, and even large blocks of supernumerary sequence (>200 kb) have recently translocated to the core. Vice versa, the supernumerary genome acts as a refuge for genes that are duplicated from the core genome. CONCLUSIONS: For the first time, a mechanism was determined that explains the differences that exist between the core and supernumerary genome in fungi. Different biology rather than origin was shown to be responsible. A "living apart together" crosstalk exists between the core and supernumerary genome, accelerating chromosomal and organismal evolution.


Asunto(s)
Cromosomas Fúngicos/genética , Hongos/genética , Análisis de Secuencia de ADN/métodos , Triticum/microbiología , Composición de Base , Elementos Transponibles de ADN , Evolución Molecular , Duplicación de Gen , Tamaño del Genoma , Mutación Puntual , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Fungal Genet Biol ; 95: 39-48, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27497828

RESUMEN

Fusarium graminearum and 21 related species comprising the F. sambucinum species complex lineage 1 (FSAMSC-1) are the most important Fusarium Head Blight pathogens of cereal crops world-wide. FSAMSC-1 species typically produce type B trichothecenes. However, some F. graminearum strains were recently found to produce a novel type A trichothecene (NX-2) resulting from functional variation in the trichothecene biosynthetic enzyme Tri1. We used a PCR-RFLP assay targeting the TRI1 gene to identify the NX-2 allele among a global collection of 2515 F. graminearum. NX-2 isolates were only found in southern Canada and the northern U.S., where they were observed at low frequency (1.8%), but over a broader geographic range and set of cereal hosts than previously recognized. Phylogenetic analyses of TRI1 and adjacent genes produced gene trees that were incongruent with the history of species divergence within FSAMSC-1, indicating trans-species evolution of ancestral polymorphism. In addition, placement of NX-2 strains in the TRI1 gene tree was influenced by the accumulation of nonsynonymous substitutions associated with the evolution of the NX-2 chemotype, and a significant (P<0.001) change in selection pressure was observed along the NX-2 branch (ω=1.16) in comparison to other branches (ω=0.17) in the TRI1 phylogeny. Parameter estimates were consistent with positive selection for specific amino-acid changes during the evolution of NX-2, but direct tests of positive selection were not significant. Phylogenetic analyses of fourfold degenerate sites and intron sequences in TRI1 indicated the NX-2 chemotype had a single evolutionary origin and evolved recently from a type B ancestor. Our results indicate the NX-2 chemotype may be indigenous, and possibly endemic, to southern Canada and the northern U.S. In addition, we demonstrate that the evolution of TRI1 within FSAMSC-1 has been complex, with evidence of trans-species evolution and chemotype-specific shifts in selective constraint.


Asunto(s)
Evolución Molecular , Fusarium/genética , Genes Fúngicos/genética , Filogenia , Tricotecenos/genética , Secuencia de Aminoácidos , Biodiversidad , Canadá , ADN de Hongos/análisis , ADN de Hongos/genética , Grano Comestible/microbiología , Proteínas Fúngicas/genética , Fusarium/clasificación , Fusarium/metabolismo , Geografía , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Polimorfismo de Longitud del Fragmento de Restricción , Especificidad de la Especie , Tricotecenos/biosíntesis , Tricotecenos/química , Estados Unidos
9.
BMC Genomics ; 15: 191, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24625133

RESUMEN

BACKGROUND: Genome comparisons between closely related species often show non-conserved regions across chromosomes. Some of them are located in specific regions of chromosomes and some are even confined to one or more entire chromosomes. The origin and biological relevance of these non-conserved regions are still largely unknown. Here we used the genome of Fusarium graminearum to elucidate the significance of non-conserved regions. RESULTS: The genome of F. graminearum harbours thirteen non-conserved regions dispersed over all of the four chromosomes. Using RNA-Seq data from the mycelium of F. graminearum, we found weakly expressed regions on all of the four chromosomes that exactly matched with non-conserved regions. Comparison of gene expression between two different developmental stages (conidia and mycelium) showed that the expression of genes in conserved regions is stable, while gene expression in non-conserved regions is much more influenced by developmental stage. In addition, genes involved in the production of secondary metabolites and secreted proteins are enriched in non-conserved regions, suggesting that these regions could also be important for adaptations to new environments, including adaptation to new hosts. Finally, we found evidence that non-conserved regions are generated by sequestration of genes from multiple locations. Gene relocations may lead to clustering of genes with similar expression patterns or similar biological functions, which was clearly exemplified by the PKS2 gene cluster. CONCLUSIONS: Our results showed that chromosomes can be functionally divided into conserved and non-conserved regions, and both could have specific and distinct roles in genome evolution and regulation of gene expression.


Asunto(s)
Cromosomas Fúngicos , Fusarium/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Evolución Molecular , Fusarium/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Familia de Multigenes , Análisis de Secuencia de ARN , Sintenía
10.
Mol Microbiol ; 90(2): 290-306, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23937442

RESUMEN

Fumonisins are a family of carcinogenic secondary metabolites produced by members of the Fusarium fujikuroi species complex (FFSC) and rare strains of Fusarium oxysporum. In Fusarium, fumonisin biosynthetic genes (FUM) are clustered, and the cluster is uniform in gene organization. Here, sequence analyses indicated that the cluster exists in five different genomic contexts, defining five cluster types. In FUM gene genealogies, evolutionary relationships between fusaria with different cluster types were largely incongruent with species relationships inferred from primary-metabolism (PM) gene genealogies, and FUM cluster types are not trans-specific. In addition, synonymous site divergence analyses indicated that three FUM cluster types predate diversification of FFSC. The data are not consistent with balancing selection or interspecific hybridization, but they are consistent with two competing hypotheses: (i) multiple horizontal transfers of the cluster from unknown donors to FFSC recipients and (ii) cluster duplication and loss (birth and death). Furthermore, low levels of FUM gene divergence in F. bulbicola, an FFSC species, and F. oxysporum provide evidence for horizontal transfer of the cluster from the former, or a closely related species, to the latter. Thus, uniform gene organization within the FUM cluster belies a complex evolutionary history that has not always paralleled the evolution of Fusarium.


Asunto(s)
Evolución Molecular , Fumonisinas/metabolismo , Fusarium/genética , Transferencia de Gen Horizontal , Genes Fúngicos , Secuencia de Aminoácidos , Fumonisinas/química , Fusarium/clasificación , Fusarium/metabolismo , Duplicación de Gen , Regulación Fúngica de la Expresión Génica , Familia de Multigenes , Filogenia
11.
BMC Genomics ; 14: 21, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23324402

RESUMEN

BACKGROUND: The genome of Fusarium graminearum has been sequenced and annotated previously, but correct gene annotation remains a challenge. In addition, posttranscriptional regulations, such as alternative splicing and RNA editing, are poorly understood in F. graminearum. Here we took advantage of RNA-Seq to improve gene annotations and to identify alternative splicing and RNA editing in F. graminearum. RESULTS: We identified and revised 655 incorrectly predicted gene models, including revisions of intron predictions, intron splice sites and prediction of novel introns. 231 genes were identified with two or more alternative splice variants, mostly due to intron retention. Interestingly, the expression ratios between different transcript isoforms appeared to be developmentally regulated. Surprisingly, no RNA editing was identified in F. graminearum. Moreover, 2459 novel transcriptionally active regions (nTARs) were identified and our analysis indicates that many of these could be missed genes. Finally, we identified the 5' UTR and/or 3' UTR sequences of 7666 genes. A number of representative novel gene models and alternatively spliced genes were validated by reverse transcription polymerase chain reaction and sequencing of the generated amplicons. CONCLUSIONS: We have developed novel and efficient strategies to identify alternatively spliced genes and incorrect gene models based on RNA-Seq data. Our study identified hundreds of alternatively spliced genes in F. graminearum and for the first time indicated that alternative splicing is developmentally regulated in filamentous fungi. In addition, hundreds of incorrect predicted gene models were identified and revised and thousands of nTARs were discovered in our study, which will be helpful for the future genomic and transcriptomic studies in F. graminearum.


Asunto(s)
Empalme Alternativo/genética , Fusarium/genética , Modelos Genéticos , ARN de Hongos/genética , Análisis de Secuencia de ARN , Secuencia de Bases , Fusarium/crecimiento & desarrollo , Genes Fúngicos/genética , Datos de Secuencia Molecular , Control de Calidad , Edición de ARN/genética , Sitios de Empalme de ARN/genética , Transcripción Genética/genética , Regiones no Traducidas/genética
13.
Front Plant Sci ; 13: 916282, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712562

RESUMEN

Exploiting wheat cultivars with stable resistance to Fusarium Head blight (FHB) and toxin accumulation is a cost-effective and environmentally friendly strategy to reduce the risk of yield losses and contamination with mycotoxins. To facilitate the deployment of stable cultivar resistance, we evaluated FHB resistance and resistance to mycotoxin accumulation in 410 wheat lines bred by local breeders from four major wheat growing regions in China after natural infection at three distinct locations (Hefei, Yangzhou and Nanping). Significant differences in disease index were observed among the three locations. The disease indexes (DI's) in Nanping were the highest, followed by Yangzhou and Hefei. The distribution of DI's in Yangzhou showed the best discrimination of FHB resistance in cultivars. Growing region and cultivar had significant effect on DI and mycotoxins. Among the climate factors, relative humidity and rainfall were the key factors resulting in the severe disease. Even though most cultivars were still susceptible to FHB under the strongly conducive conditions applied, the ratio of resistant lines increased in the Upper region of the Yangtze River (UYR) and the Middle and Lower Region of the Yangtze River (MLYR) between 2015 and 2019. Deoxynivalenol (DON) was the dominant mycotoxin found in Hefei and Yangzhou, while NIV was predominant in Nanping. Disease indexes were significantly correlated with DON content in wheat grain.

14.
Mol Plant Microbe Interact ; 24(12): 1407-18, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21830952

RESUMEN

Zn(2)Cys(6) transcription factors are unique to fungi and have been reported to be involved in different regulatory functions. Here, we characterized EBR1 (enhanced branching 1), a novel Zn(2)Cys(6) transcription factor of Fusarium graminearum. Knocking out EBR1 in F. graminearum PH-1 caused reduction of both radial growth and virulence. The conidia of knock-out strain PH-1?ebr1 germinated faster than those of wild-type PH-1, but the conidiation of the mutant was significantly reduced. Detailed analysis showed that the reduced radial growth might be due to reduced apical dominance of the hyphal tip, leading to increased hyphal branching. Inoculation assays on wheat heads with a green fluorescent protein (GFP)-labeled PH-1?ebr1 mutant showed that it was unable to penetrate the rachis of the spikelets. Protein fusion with GFP showed that EBR1 is localized in the nucleus of both conidia and hyphae. Knocking out the orthologous gene FOXG_05408 in F. oxysporum f. sp. lycopersici caused a much weaker phenotype than the PH-1?ebr1 mutant, which may be due to the presence of multiple orthologous genes in this fungus. Transformation of FOXG_05408 into PH-1?ebr1 restored the mutant phenotype. Similar to EBR1, FOXG_05408 is localized in the nucleus of F. oxysporum f. sp. lycopersici. Possible functions of EBR1 and its relation with other fungal transcription factors are discussed.


Asunto(s)
Fusarium/genética , Fusarium/patogenicidad , Hifa/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/crecimiento & desarrollo , Regulación Fúngica de la Expresión Génica , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes , Inflorescencia/microbiología , Datos de Secuencia Molecular , Fenotipo , Filogenia , Alineación de Secuencia , Eliminación de Secuencia , Esporas Fúngicas/crecimiento & desarrollo , Factores de Transcripción/genética , Transformación Genética , Triticum/microbiología , Virulencia/genética , Dedos de Zinc
15.
Fungal Genet Biol ; 48(5): 485-95, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21216300

RESUMEN

Certain Fusarium species cause head blight of wheat and other small grains worldwide and produce trichothecene mycotoxins. These mycotoxins can induce toxicoses in animals and humans and can contribute to the ability of some fusaria to cause plant disease. Production of the trichothecene 3-acetyldeoxynivalenol (3-ADON) versus 15-acetyldeoxynivalenol (15-ADON) is an important phenotypic difference within and among some Fusarium species. However, until now, the genetic basis for this difference in chemotype has not been identified. Here, we identified consistent DNA sequence differences in the coding region of the trichothecene biosynthetic gene TRI8 in 3-ADON and 15-ADON strains. Functional analyses of the TRI8 enzyme (Tri8) in F. graminearum, the predominant cause of wheat head blight in North America and Europe, revealed that Tri8 from 3-ADON strains catalyzes deacetylation of the trichothecene biosynthetic intermediate 3,15-diacetyldeoxynivalenol at carbon 15 to yield 3-ADON, whereas Tri8 from 15-ADON strains catalyzes deacetylation of 3,15-diacetyldeoxynivalenol at carbon 3 to yield 15-ADON. Fusarium strains that produce the trichothecene nivalenol have a Tri8 that functions like that in 15-ADON strains. TRI3, which encodes a trichothecene carbon 15 acetyltransferase, was found to be functional in all three chemotypes. Together, our data indicate that differential activity of Tri8 determines the 3-ADON and 15-ADON chemotypes in Fusarium.


Asunto(s)
Fusarium/genética , Fusarium/metabolismo , Tricotecenos/biosíntesis , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/química , Estructura Molecular , Tricotecenos/química
16.
Mycologia ; 103(3): 570-85, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21177490

RESUMEN

Several strains of Fusarium isolated from banana were identified previously as F. verticillioides (Sacc.) Nirenberg but described as unable to produce fumonisin. Here we report biochemical and morphological evidence, as well as multilocus phylogenetic analyses based on elongation factor (EF-1α), calmodulin, ß-tubulin, and the second largest subunit of RNA polymerase II (RPB2) sequences, indicating that these isolates represent a unique lineage in the Gibberella fujikuroi species complex related to but distinct from F. verticillioides. Together with previous results of molecular studies, as well as with results of metabolite analyses, crossing experiments, pathogenicity tests and morphological characterization, these new data indicate that these strains isolated from banana represent a new species, Gibberella musae Van Hove et al. sp. nov. (anamorph: Fusarium musae Van Hove et al. sp. nov.), which is described herein.


Asunto(s)
ADN de Hongos/genética , Fusarium/clasificación , Gibberella , Musa/microbiología , Secuencia de Bases , Calmodulina/genética , Fumonisinas , Fusarium/citología , Fusarium/genética , Fusarium/aislamiento & purificación , Gibberella/clasificación , Gibberella/citología , Gibberella/genética , Gibberella/aislamiento & purificación , Factores de Elongación de Péptidos/genética , Filogenia , Reacción en Cadena de la Polimerasa , ARN Polimerasa II/genética , Análisis de Secuencia de ADN , Tubulina (Proteína)/genética
17.
Front Plant Sci ; 12: 641890, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679858

RESUMEN

Fusarium head blight (FHB) in wheat (Triticum aestivum L.) is caused by a consortium of mutually interacting Fusarium species. In the field, the weakly pathogenic F. poae often thrives on the infection sites of the virulent F. graminearum. In this ecological context, we investigated the efficacy of chemical and biocontrol agents against F. graminearum in wheat ears. For this purpose, one fungicide comprising prothioconazole + spiroxamine and two bacterial biocontrol strains, Streptomyces rimosus LMG 19352 and Rhodococcus sp. R-43120 were tested for their efficacy to reduce FHB symptoms and mycotoxin (deoxynivalenol, DON) production by F. graminearum in presence or absence of F. poae. Results showed that the fungicide and both actinobacterial strains reduced FHB symptoms and concomitant DON levels in wheat ears inoculated with F. graminearum. Where Streptomyces rimosus appeared to have direct antagonistic effects, Rhodococcus and the fungicide mediated suppression of F. graminearum was linked to the archetypal salicylic acid and jasmonic acid defense pathways that involve the activation of LOX1, LOX2 and ICS. Remarkably, this chemical- and biocontrol efficacy was significantly reduced when F. poae was co-inoculated with F. graminearum. This reduced efficacy was linked to a suppression of the plant's intrinsic defense system and increased levels of DON. In conclusion, our study shows that control strategies against the virulent F. graminearum in the disease complex causing FHB are hampered by the presence of the weakly pathogenic F. poae. This study provides generic insights in the complexity of control strategies against plant diseases caused by multiple pathogens.

18.
Eukaryot Cell ; 8(7): 1001-13, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19411619

RESUMEN

We identified and functionally characterized genes encoding three Galpha proteins and one Gbeta protein in the dimorphic fungal wheat pathogen Mycosphaerella graminicola, which we designated MgGpa1, MgGpa2, MgGpa3, and MgGpb1, respectively. Sequence comparisons and phylogenetic analyses showed that MgGPA1 and MgGPA3 are most related to the mammalian Galpha(i) and Galpha(s) families, respectively, whereas MgGPA2 is not related to either of these families. On potato dextrose agar (PDA) and in yeast glucose broth (YGB), MgGpa1 mutants produced significantly longer spores than those of the wild type (WT), and these developed into unique fluffy mycelia in the latter medium, indicating that this gene negatively controls filamentation. MgGpa3 mutants showed more pronounced yeast-like growth accompanied with hampered filamentation and secreted a dark-brown pigment into YGB. Germ tubes emerging from spores of MgGpb1 mutants were wavy on water agar and showed a nested type of growth on PDA that was due to hampered filamentation, numerous cell fusions, and increased anastomosis. Intracellular cyclic AMP (cAMP) levels of MgGpb1 and MgGpa3 mutants were decreased, indicating that both genes positively regulate the cAMP pathway, which was confirmed because the WT phenotype was restored by adding cAMP to these mutant cultures. The cAMP levels in MgGpa1 mutants and the WT were not significantly different, suggesting that this gene might be dispensable for cAMP regulation. In planta assays showed that mutants of MgGpa1, MgGpa3, and MgGpb1 are strongly reduced in pathogenicity. We concluded that the heterotrimeric G proteins encoded by MgGpa3 and MgGpb1 regulate the cAMP pathway that is required for development and pathogenicity in M. graminicola.


Asunto(s)
Ascomicetos/crecimiento & desarrollo , AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Ascomicetos/genética , Ascomicetos/patogenicidad , Diferenciación Celular/genética , Aumento de la Célula , Proliferación Celular , AMP Cíclico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/aislamiento & purificación , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/aislamiento & purificación , Regulación Fúngica de la Expresión Génica/genética , Proteínas de Unión al GTP Heterotriméricas/genética , Proteínas de Unión al GTP Heterotriméricas/aislamiento & purificación , Mutación/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Transducción de Señal/genética , Triticum/genética , Triticum/metabolismo , Triticum/microbiología
19.
Front Microbiol ; 11: 1092, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582074

RESUMEN

The Fusarium fujikuroi species complex (FFSC) and F. oxysporum species complex (FOSC) are two related groups of plant pathogens causing a wide diversity of diseases in agricultural crops world wide. The aims of this study are (1) to clarify the phylogeny of the FFSC, (2) to identify potential deviation from tree-like evolution, (3) to explore the value of using mitogenomes for these kinds of analyses, and (4) to better understand mitogenome evolution. In total, we have sequenced 24 species from the FFSC and a representative set of recently analyzed FOSC strains was chosen, while F. redolens was used as outgroup for the two species complexes. A species tree was constructed based on the concatenated alignment of seven nuclear genes and the mitogenome, which was contrasted to individual gene trees to identify potential conflicts. These comparisons indicated conflicts especially within the previously described African clade of the FFSC. Furthermore, the analysis of the mitogenomes revealed the presence of a variant of the large variable (LV) region in FFSC which was previously only reported for FOSC. The distribution of this variant and the results of sequence comparisons indicate horizontal genetic transfer between members of the two species complexes, most probably through introgression. In addition, a duplication of atp9 was found inside an intron of cob, which suggests that even highly conserved mitochondrial genes can have paralogs. Paralogization in turn may lead to inaccurate single gene phylogenies. In conclusion, mitochondrial genomes provide a robust basis for phylogeny. Comparative phylogenetic analysis indicated that gene flow among and between members of FFSC and FOSC has played an important role in the evolutionary history of these two groups. Since mitogenomes show greater levels of conservation and synteny than nuclear regions, they are more likely to be compatible for recombination than nuclear regions. Therefore, mitogenomes can be used as indicators to detect interspecies gene flow.

20.
Mol Plant Pathol ; 21(12): 1559-1572, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32977364

RESUMEN

Plant diseases are often caused by a consortium of pathogens competing with one another to gain a foothold in the infection niche. Nevertheless, studies are often limited to a single pathogen on its host. In Europe, fusarium head blight (FHB) of wheat is caused by multiple Fusarium species, including Fusarium graminearum and F. poae. Here, we combined a time series of (co)inoculations, monitored by multispectral imaging, transcriptional, and mycotoxin analyses, to study the temporal interaction between both species and wheat. Our results showed coinoculation of F. graminearum and F. poae inhibited symptom development but did not alter mycotoxin accumulation compared to a single inoculation with F. graminearum. In contrast, preinoculation of F. poae reduced both FHB symptoms and mycotoxin levels compared to a single F. graminearum infection. Interestingly, F. poae exhibited increased growth in dual infections, demonstrating that this weak pathogen takes advantage of its co-occurrence with F. graminearum. Quantitative reverse transcription PCR revealed that F. poae induces LOX and ICS gene expression in wheat. We hypothesize that the early induction of salicylic and jasmonic acid-related defences by F. poae hampers a subsequent F. graminearum infection. This study is the first to report on the defence mechanisms of the plant involved in a tripartite interaction between two species of a disease complex and their host.


Asunto(s)
Fusarium/fisiología , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Triticum/microbiología , Ciclopentanos/metabolismo , Micotoxinas/metabolismo , Oxilipinas/metabolismo , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Ácido Salicílico/metabolismo , Triticum/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA