Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroeng Rehabil ; 15(1): 59, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29954401

RESUMEN

BACKGROUND: Spinal cord injury is a devastating condition that can dramatically impact hand motor function. Passive and active assistive devices are becoming more commonly used to enhance lost hand strength and dexterity. Soft robotics is an emerging discipline that combines the classical principles of robotics with soft materials and could provide a new class of active assistive devices. Soft robotic assistive devices enable a human-robot interaction facilitated by compliant and light-weight structures. The scope of this work was to demonstrate that a fabric-based soft robotic glove can effectively assist participants affected by spinal cord injury in manipulating objects encountered in daily living. METHODS: The Toronto Rehabilitation Institute Hand Function Test was administered to 9 participants with C4-C7 spinal cord injuries to assess the functionality of the soft robotic glove. The test included object manipulation tasks commonly encountered during activities of daily living (ADL) and lift force measurements. The test was administered to each participant twice; once without the assistive glove to provide baseline data and once while wearing the assistive glove. The object manipulation subtests were evaluated using a linear mixed model, including interaction effects of variables such as time since injury. The lift force measures were separately evaluated using the Wilcoxon signed-rank test. RESULTS: The soft robotic glove improved object manipulation in ADL tasks. The difference in mean scores between baseline and assisted conditions was significant across all participants and for all manipulated objects. An improvement of 33.42 ± 15.43% relative to the maximal test score indicates that the glove sufficiently enhances hand function during ADL tasks. Moreover, lift force also increased when using the assistive soft robotic glove, further demonstrating the effectiveness of the device in assisting hand function. CONCLUSIONS: The results gathered in this study validate our fabric-based soft robotic glove as an effective device to assist hand function in individuals who have suffered upper limb paralysis following a spinal cord injury.


Asunto(s)
Dispositivo Exoesqueleto , Mano/fisiopatología , Robótica/instrumentación , Traumatismos de la Médula Espinal/rehabilitación , Actividades Cotidianas , Adulto , Anciano , Femenino , Fuerza de la Mano/fisiología , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
2.
Soft Robot ; 5(5): 662-674, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30024312

RESUMEN

Knit, woven, and nonwoven fabrics offer a diverse range of stretch and strain limiting mechanical properties that can be leveraged to produce tailored, whole-body deformation mechanics of soft robotic systems. This work presents new insights and methods for combining heterogeneous fabric material layers to create soft fabric-based actuators. This work demonstrates that a range of multi-degree-of-freedom motions can be generated by varying fabrics and their layered arrangements when a thin airtight bladder is inserted between them and inflated. Specifically, we present bending and straightening fabric-based actuators that are simple to manufacture, lightweight, require low operating pressures, display a high torque-to-weight ratio, and occupy a low volume in their unpressurized state. Their utility is demonstrated through their integration into a glove that actively assists hand opening and closing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA