Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Am J Hum Genet ; 103(1): 154-162, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29961569

RESUMEN

TRAF7 is a multi-functional protein involved in diverse signaling pathways and cellular processes. The phenotypic consequence of germline TRAF7 variants remains unclear. Here we report missense variants in TRAF7 in seven unrelated individuals referred for clinical exome sequencing. The seven individuals share substantial phenotypic overlap, with developmental delay, congenital heart defects, limb and digital anomalies, and dysmorphic features emerging as key unifying features. The identified variants are de novo in six individuals and comprise four distinct missense changes, including a c.1964G>A (p.Arg655Gln) variant that is recurrent in four individuals. These variants affect evolutionarily conserved amino acids and are located in key functional domains. Gene-specific mutation rate analysis showed that the occurrence of the de novo variants in TRAF7 (p = 2.6 × 10-3) and the recurrent de novo c.1964G>A (p.Arg655Gln) variant (p = 1.9 × 10-8) in our exome cohort was unlikely to have occurred by chance. In vitro analyses of the observed TRAF7 mutations showed reduced ERK1/2 phosphorylation. Our findings suggest that missense mutations in TRAF7 are associated with a multisystem disorder and provide evidence of a role for TRAF7 in human development.


Asunto(s)
Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Mutación Missense/genética , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Adulto , Aminoácidos/genética , Niño , Preescolar , Exoma/genética , Femenino , Cardiopatías Congénitas/genética , Humanos , Lactante , Recién Nacido , Sistema de Señalización de MAP Quinasas/genética , Masculino , Anomalías Musculoesqueléticas/genética , Fenotipo
2.
Dev Med Child Neurol ; 59(12): 1307-1311, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28762473

RESUMEN

Aicardi-Goutières syndrome (AGS) is a rare disorder with in utero or postnatal onset of encephalopathy and progressive neurological deterioration. The seven genetic subtypes of AGS are associated with abnormal type I interferon-mediated innate immune response. Most patients with AGS present with progressive microcephaly, spasticity, and cognitive impairment. Some, especially those with type 2 (AGS2), manifest milder phenotypes, reduced childhood mortality, and relative preservation of physical and cognitive abilities. In this report, we describe two siblings (sister and brother) diagnosed with AGS2 in their second decade, who exhibited static encephalopathy since 1 year of age with spastic quadriplegia and anarthria but preserved intellect. Both were homozygous for the common pathogenic RNASEH2B allele (c.529G>A, p.Ala177Thr). Rather than manifesting calcifications and leukoencephalopathy, both had increased iron signal in the basal ganglia. Our report broadens the clinical and imaging spectrum of AGS2 and emphasizes the importance of including AGS2 in the differential diagnosis of idiopathic spastic cerebral palsy. WHAT THIS PAPER ADDS: We identified two siblings (sister and brother) with atypical Aicardi-Goutières syndrome type 2 due to RNASEH2B mutation. Manifestations included spastic quadriplegia and anarthria but preserved intellect and increased iron signal in the basal ganglia. RNASEH2B-related Aicardi-Goutières syndrome type 2 can have present with a variable phenotype, including idiopathic spastic cerebral palsy.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/complicaciones , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico por imagen , Disartria/etiología , Malformaciones del Sistema Nervioso/complicaciones , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Cuadriplejía/etiología , Adolescente , Enfermedades Autoinmunes del Sistema Nervioso/genética , Diagnóstico Tardío , Femenino , Humanos , Masculino , Malformaciones del Sistema Nervioso/genética , Ribonucleasa H/genética
3.
Genet Med ; 18(6): 608-17, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26562225

RESUMEN

PURPOSE: Medical diagnosis and molecular or biochemical confirmation typically rely on the knowledge of the clinician. Although this is very difficult in extremely rare diseases, we hypothesized that the recording of patient phenotypes in Human Phenotype Ontology (HPO) terms and computationally ranking putative disease-associated sequence variants improves diagnosis, particularly for patients with atypical clinical profiles. METHODS: Using simulated exomes and the National Institutes of Health Undiagnosed Diseases Program (UDP) patient cohort and associated exome sequence, we tested our hypothesis using Exomiser. Exomiser ranks candidate variants based on patient phenotype similarity to (i) known disease-gene phenotypes, (ii) model organism phenotypes of candidate orthologs, and (iii) phenotypes of protein-protein association neighbors. RESULTS: Benchmarking showed Exomiser ranked the causal variant as the top hit in 97% of known disease-gene associations and ranked the correct seeded variant in up to 87% when detectable disease-gene associations were unavailable. Using UDP data, Exomiser ranked the causative variant(s) within the top 10 variants for 11 previously diagnosed variants and achieved a diagnosis for 4 of 23 cases undiagnosed by clinical evaluation. CONCLUSION: Structured phenotyping of patients and computational analysis are effective adjuncts for diagnosing patients with genetic disorders.Genet Med 18 6, 608-617.


Asunto(s)
Secuenciación del Exoma/métodos , Exoma/genética , Enfermedades Raras/genética , Enfermedades Raras/fisiopatología , Animales , Biología Computacional , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Estudios de Asociación Genética , Variación Genética , Humanos , Ratones , National Institutes of Health (U.S.) , Pacientes , Fenotipo , Enfermedades Raras/diagnóstico , Enfermedades Raras/epidemiología , Estados Unidos , Pez Cebra
4.
Genet Med ; 16(10): 741-50, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24784157

RESUMEN

PURPOSE: Using exome sequence data from 159 families participating in the National Institutes of Health Undiagnosed Diseases Program, we evaluated the number and inheritance mode of reportable incidental sequence variants. METHODS: Following the American College of Medical Genetics and Genomics recommendations for reporting of incidental findings from next-generation sequencing, we extracted variants in 56 genes from the exome sequence data of 543 subjects and determined the reportable incidental findings for each participant. We also defined variant status as inherited or de novo for those with available parental sequence data. RESULTS: We identified 14 independent reportable variants in 159 (8.8%) families. For nine families with parental sequence data in our cohort, a parent transmitted the variant to one or more children (nine minor children and four adult children). The remaining five variants occurred in adults for whom parental sequences were unavailable. CONCLUSION: Our results are consistent with the expectation that a small percentage of exomes will result in identification of an incidental finding under the American College of Medical Genetics and Genomics recommendations. Additionally, our analysis of family sequence data highlights that genome and exome sequencing of families has unavoidable implications for immediate family members and therefore requires appropriate counseling for the family.


Asunto(s)
Exoma/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética , Análisis de Secuencia de ADN/métodos , Adolescente , Adulto , Niño , Estudios de Cohortes , Salud de la Familia , Femenino , Asesoramiento Genético , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Genoma Humano/genética , Humanos , Hallazgos Incidentales , Masculino , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/genética , Persona de Mediana Edad , National Institutes of Health (U.S.) , Estados Unidos , Adulto Joven
5.
Genet Med ; 14(1): 51-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22237431

RESUMEN

PURPOSE: This report describes the National Institutes of Health Undiagnosed Diseases Program, details the Program's application of genomic technology to establish diagnoses, and details the Program's success rate during its first 2 years. METHODS: Each accepted study participant was extensively phenotyped. A subset of participants and selected family members (29 patients and 78 unaffected family members) was subjected to an integrated set of genomic analyses including high-density single-nucleotide polymorphism arrays and whole exome or genome analysis. RESULTS: Of 1,191 medical records reviewed, 326 patients were accepted and 160 were admitted directly to the National Institutes of Health Clinical Center on the Undiagnosed Diseases Program service. Of those, 47% were children, 55% were females, and 53% had neurologic disorders. Diagnoses were reached on 39 participants (24%) on clinical, biochemical, pathologic, or molecular grounds; 21 diagnoses involved rare or ultra-rare diseases. Three disorders were diagnosed based on single-nucleotide polymorphism array analysis and three others using whole exome sequencing and filtering of variants. Two new disorders were discovered. Analysis of the single-nucleotide polymorphism array study cohort revealed that large stretches of homozygosity were more common in affected participants relative to controls. CONCLUSION: The National Institutes of Health Undiagnosed Diseases Program addresses an unmet need, i.e., the diagnosis of patients with complex, multisystem disorders. It may serve as a model for the clinical application of emerging genomic technologies and is providing insights into the characteristics of diseases that remain undiagnosed after extensive clinical workup.


Asunto(s)
Programas de Gobierno , Programas Nacionales de Salud , National Institutes of Health (U.S.) , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Investigación Biomédica , Niño , Preescolar , Protocolos Clínicos , Variaciones en el Número de Copia de ADN , Exoma , Femenino , Homocigoto , Humanos , Lactante , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple , Enfermedades Raras/mortalidad , Estados Unidos , Adulto Joven
6.
Neurol Neuroimmunol Neuroinflamm ; 6(1): e523, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30588482

RESUMEN

Objective: To determine the prevalence and clinical features of anti-HMGCR myopathy among patients with presumed limb-girdle muscular dystrophy (LGMD) in whom genetic testing has failed to elucidate causative mutations. Methods: Patients with presumed LGMD and unrevealing genetic testing were selected based on a few clinico-pathologic features and tested for anti-HMGCR autoantibodies (n = 11). These clinico-pathologic features are peak creatine kinase (CK) greater than 1,000 IU/L and at least 3 of the following features: (1) limb-girdle pattern of weakness, (2) selective involvement of posterior thigh on clinical examination or muscle imaging, (3) dystrophic changes on muscle biopsy, and (4) no family history of muscular dystrophy. Results: Six patients tested positive for anti-HMGCR autoantibodies. In 4, there was a presymptomatic phase, lasting as long as 10 years, characterized by elevated CK levels without weakness. Muscle biopsies revealed variable degrees of a dystrophic pathology without prominent inflammation. In an independent cohort of patients with anti-HMGCR myopathy, 17 of 51 (∼33%) patients were initially presumed to have a form of LGMD based on clinico-pathologic features but were ultimately found to have anti-HMGCR myopathy. Most of these patients responded favorably to immunomodulatory therapies, evidenced by reduction of CK levels and improved strength. Conclusions: Anti-HMGCR myopathy can resemble LGMD. Diagnosis of patients with a LGMD-like presentation of anti-HMGCR myopathy is critical because these patients may respond favorably to immunotherapy, especially those with shorter disease duration.


Asunto(s)
Hidroximetilglutaril-CoA Reductasas/inmunología , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/inmunología , Distrofia Muscular de Cinturas/diagnóstico , Distrofia Muscular de Cinturas/inmunología , Adolescente , Adulto , Autoanticuerpos/inmunología , Niño , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Musculares/epidemiología , Distrofia Muscular de Cinturas/epidemiología
7.
Front Med (Lausanne) ; 4: 62, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28603714

RESUMEN

Traditionally, the use of genomic information for personalized medical decisions relies on prior discovery and validation of genotype-phenotype associations. This approach constrains care for patients presenting with undescribed problems. The National Institutes of Health (NIH) Undiagnosed Diseases Program (UDP) hypothesized that defining disease as maladaptation to an ecological niche allows delineation of a logical framework to diagnose and evaluate such patients. Herein, we present the philosophical bases, methodologies, and processes implemented by the NIH UDP. The NIH UDP incorporated use of the Human Phenotype Ontology, developed a genomic alignment strategy cognizant of parental genotypes, pursued agnostic biochemical analyses, implemented functional validation, and established virtual villages of global experts. This systematic approach provided a foundation for the diagnostic or non-diagnostic answers provided to patients and serves as a paradigm for scalable translational research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA