Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Stem Cell Reports ; 10(3): 693-702, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29478892

RESUMEN

Use of hepatocytes derived from induced pluripotent stem cells (i-Heps) is limited by their functional differences in comparison with primary cells. Extracellular niche factors likely play a critical role in bridging this gap. Using image-based characterization (high content analysis; HCA) of freshly isolated hepatocytes from 17 human donors, we devised and validated an algorithm (Hepatocyte Likeness Index; HLI) for comparing the hepatic properties of cells against a physiological gold standard. The HLI was then applied in a targeted screen of extracellular niche factors to identify substrates driving i-Heps closer to the standard. Laminin 411, the top hit, was validated in two additional induced pluripotent stem cell (iPSC) lines, primary tissue, and an in vitro model of α1-antitrypsin deficiency. Cumulatively, these data provide a reference method to control and screen for i-Hep differentiation, identify Laminin 411 as a key niche protein, and underscore the importance of combining substrates, soluble factors, and HCA when developing iPSC applications.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Laminina/metabolismo , Adolescente , Adulto , Diferenciación Celular/fisiología , Femenino , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Masculino , alfa 1-Antitripsina/metabolismo
2.
ACS Chem Biol ; 13(4): 1038-1047, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29485852

RESUMEN

Schizophrenia is a severe neuropsychiatric disease that lacks completely effective and safe therapies. As a polygenic disorder, genetic studies have only started to shed light on its complex etiology. To date, the positive symptoms of schizophrenia are well-managed by antipsychotic drugs, which primarily target the dopamine D2 receptor (D2R). However, these antipsychotics are often accompanied by severe side effects, including motoric symptoms. At D2R, antipsychotic drugs antagonize both G-protein dependent (Gαi/o) signaling and G-protein independent (ß-arrestin) signaling. However, the relevant contributions of the distinct D2R signaling pathways to antipsychotic efficacy and on-target side effects (motoric) are still incompletely understood. Recent evidence from mouse genetic and pharmacological studies point to ß-arrestin signaling as the major driver of antipsychotic efficacy and suggest that a ß-arrestin biased D2R antagonist could achieve an additional level of selectivity at D2R, increasing the therapeutic index of next generation antipsychotics. Here, we characterize BRD5814, a highly brain penetrant ß-arrestin biased D2R antagonist. BRD5814 demonstrated good target engagement via PET imaging, achieving efficacy in an amphetamine-induced hyperlocomotion mouse model with strongly reduced motoric side effects in a rotarod performance test. This proof of concept study opens the possibility for the development of a new generation of pathway selective antipsychotics at D2R with reduced side effect profiles for the treatment of schizophrenia.


Asunto(s)
Antipsicóticos/uso terapéutico , Receptores de Dopamina D2/efectos de los fármacos , beta-Arrestinas/metabolismo , Animales , Diagnóstico por Imagen/métodos , Proteínas de Unión al GTP/antagonistas & inhibidores , Humanos , Locomoción/efectos de los fármacos , Ratones , Esquizofrenia/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , beta-Arrestinas/antagonistas & inhibidores
3.
ACS Chem Biol ; 11(7): 1952-63, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27128528

RESUMEN

The mood stabilizer lithium, the first-line treatment for bipolar disorder, is hypothesized to exert its effects through direct inhibition of glycogen synthase kinase 3 (GSK3) and indirectly by increasing GSK3's inhibitory serine phosphorylation. GSK3 comprises two highly similar paralogs, GSK3α and GSK3ß, which are key regulatory kinases in the canonical Wnt pathway. GSK3 stands as a nodal target within this pathway and is an attractive therapeutic target for multiple indications. Despite being an active field of research for the past 20 years, many GSK3 inhibitors demonstrate either poor to moderate selectivity versus the broader human kinome or physicochemical properties unsuitable for use in in vitro systems or in vivo models. A nonconventional analysis of data from a GSK3ß inhibitor high-throughput screening campaign, which excluded known GSK3 inhibitor chemotypes, led to the discovery of a novel pyrazolo-tetrahydroquinolinone scaffold with unparalleled kinome-wide selectivity for the GSK3 kinases. Taking advantage of an uncommon tridentate interaction with the hinge region of GSK3, we developed highly selective and potent GSK3 inhibitors, BRD1652 and BRD0209, which demonstrated in vivo efficacy in a dopaminergic signaling paradigm modeling mood-related disorders. These new chemical probes open the way for exclusive analyses of the function of GSK3 kinases in multiple signaling pathways involved in many prevalent disorders.


Asunto(s)
Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Animales , Diseño de Fármacos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA