Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Semin Immunol ; 70: 101846, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37801907

RESUMEN

Since the 1960 s, our health has been compromised by exposure to over 350,000 newly introduced toxic substances, contributing to the current pandemic in allergic, autoimmune and metabolic diseases. The "Epithelial Barrier Theory" postulates that these diseases are exacerbated by persistent periepithelial inflammation (epithelitis) triggered by exposure to a wide range of epithelial barrier-damaging substances as well as genetic susceptibility. The epithelial barrier serves as the body's primary physical, chemical, and immunological barrier against external stimuli. A leaky epithelial barrier facilitates the translocation of the microbiome from the surface of the afflicted tissues to interepithelial and even deeper subepithelial locations. In turn, opportunistic bacterial colonization, microbiota dysbiosis, local inflammation and impaired tissue regeneration and remodelling follow. Migration of inflammatory cells to susceptible tissues contributes to damage and inflammation, initiating and aggravating many chronic inflammatory diseases. The objective of this review is to highlight and evaluate recent studies on epithelial physiology and its role in the pathogenesis of chronic diseases in light of the epithelial barrier theory.


Asunto(s)
Hipersensibilidad , Enfermedades Metabólicas , Microbiota , Humanos , Inflamación , Enfermedad Crónica , Disbiosis
2.
J Immunol ; 204(7): 1798-1809, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32066596

RESUMEN

Plasmodium spp., the causative agent of malaria, have a complex life cycle. The exponential growth of the parasites during the blood stage is responsible for almost all malaria-associated morbidity and mortality. Therefore, tight immune control of the intraerythrocytic replication of the parasite is essential to prevent clinical malaria. Despite evidence that the particular lymphocyte subset of γδ T cells contributes to protective immunity during the blood stage in naive hosts, their precise inhibitory mechanisms remain unclear. Using human PBMCs, we confirmed in this study that γδ T cells specifically and massively expanded upon activation with Plasmodium falciparum culture supernatant. We also demonstrate that these activated cells gain cytolytic potential by upregulating cytotoxic effector proteins and IFN-γ. The killer cells bound to infected RBCs and killed intracellular P. falciparum via the transfer of the granzymes, which was mediated by granulysin in a stage-specific manner. Several vital plasmodial proteins were efficiently destroyed by granzyme B, suggesting proteolytic degradation of these proteins as essential in the lymphocyte-mediated death pathway. Overall, these data establish a granzyme- and granulysin-mediated innate immune mechanism exerted by γδ T cells to kill late-stage blood-residing P. falciparum.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T/inmunología , Granzimas/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Antígenos de Protozoos/inmunología , Células Cultivadas , Eritrocitos/inmunología , Humanos , Inmunidad Innata/inmunología , Interferón gamma/inmunología , Células Asesinas Naturales/inmunología , Leucocitos Mononucleares/inmunología , Estadios del Ciclo de Vida/inmunología , Activación de Linfocitos/inmunología , Subgrupos de Linfocitos T/inmunología , Regulación hacia Arriba/inmunología
3.
Allergy ; 76(8): 2565-2574, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33866583

RESUMEN

BACKGROUND: Allergy is a global disease with overall frequencies of >20%. Symptoms vary from irritating local itching to life-threatening systemic anaphylaxis. Even though allergies are allergen-specific, there is a wide range of cross-reactivities (eg apple and latex) that remain largely unexplained. Given the abilities of low-affinity IgG antibodies to inhibit mast cells activation, here we elucidate the minimal affinity of IgE antibodies to induce type I hypersensitivity. METHODS: Three mature (high-affinity) IgE antibodies recognizing three distinct epitopes on Fel d 1, the major cat allergen, were back-mutated to germline conformation, resulting in binding to Fel d 1 with low affinity. The ability of these IgE antibodies to activate mast cells in vitro and in vivo was tested. RESULTS: We demonstrate that affinities as low as 10-7  M are sufficient to activate mast cells in vitro and drive allergic reactions in vivo. Low-affinity IgE antibodies are able to do so, since they bind allergens bivalently on the surface of mast cells, leading to high-avidity interactions. CONCLUSIONS: These results suggest that the underlying mechanism of allergen cross-reactivity may be low-affinity but high-avidity binding between IgE antibodies and cross-reactive allergen.


Asunto(s)
Alérgenos , Hipersensibilidad , Animales , Gatos , Reacciones Cruzadas , Humanos , Inmunoglobulina E , Inmunoglobulina G
4.
Allergy ; 76(12): 3659-3686, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34519063

RESUMEN

During the past years, there has been a global outbreak of allergic diseases, presenting a considerable medical and socioeconomical burden. A large fraction of allergic diseases is characterized by a type 2 immune response involving Th2 cells, type 2 innate lymphoid cells, eosinophils, mast cells, and M2 macrophages. Biomarkers are valuable parameters for precision medicine as they provide information on the disease endotypes, clusters, precision diagnoses, identification of therapeutic targets, and monitoring of treatment efficacies. The availability of powerful omics technologies, together with integrated data analysis and network-based approaches can help the identification of clinically useful biomarkers. These biomarkers need to be accurately quantified using robust and reproducible methods, such as reliable and point-of-care systems. Ideally, samples should be collected using quick, cost-efficient and noninvasive methods. In recent years, a plethora of research has been directed toward finding novel biomarkers of allergic diseases. Promising biomarkers of type 2 allergic diseases include sputum eosinophils, serum periostin and exhaled nitric oxide. Several other biomarkers, such as pro-inflammatory mediators, miRNAs, eicosanoid molecules, epithelial barrier integrity, and microbiota changes are useful for diagnosis and monitoring of allergic diseases and can be quantified in serum, body fluids and exhaled air. Herein, we review recent studies on biomarkers for the diagnosis and treatment of asthma, chronic urticaria, atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, food allergies, anaphylaxis, drug hypersensitivity and allergen immunotherapy. In addition, we discuss COVID-19 and allergic diseases within the perspective of biomarkers and recommendations on the management of allergic and asthmatic patients during the COVID-19 pandemic.


Asunto(s)
COVID-19 , Hipersensibilidad , Rinitis Alérgica , Biomarcadores , Humanos , Hipersensibilidad/diagnóstico , Inmunidad Innata , Linfocitos , Pandemias , SARS-CoV-2
5.
Calcif Tissue Int ; 108(5): 654-666, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33388801

RESUMEN

The probiotic Bifidobacterium longum subsp. longum 35624® (B. longum 35624®), with its surface exopolysaccharide (EPS624), has previously been demonstrated to induce immunoregulatory responses in the host and may, therefore, be a novel approach to prevent bone loss in inflammatory conditions such as post-menopausal osteoporosis (PMO). The aim of this study was to investigate the effect of EPS624 on osteoclast and osteoblast differentiation and to assess the potential of B. longum 35624® to prevent bone loss in vivo. In vitro cell assays were used to assess the impact of EPS624 on osteoclast and osteoblast differentiation. The potential of two probiotic B. longum 35624® strains, including an EPS-deficient strain, for preventing ovariectomy (Ovx)-induced bone loss was assessed in a murine model. EPS624 prevented osteoclast formation from murine bone marrow precursors under both normal and TNFα-induced inflammatory conditions and modestly increased mineralized matrix deposition in osteogenic cell cultures. However, in the presence of an anti-TLR2 blocking antibody, or in MyD88-/- osteoclast precursors, the inhibitory effect of EPS624 on osteoclast formation was diminished or completely prevented, respectively. Moreover, EPS624 induced IL-10 production in osteoclast precursors in a TLR2-dependent manner, although IL-10 was dispensable in the EPS624-mediated inhibition of osteoclast formation. In addition, EPS624-producing B. longum 35624® partially prevented bone loss in Ovx mice when administered by oral gavage. This study introduced EPS624 as a potential anti-resorptive therapy, although optimal in vivo delivery of the probiotic strain for treating low-grade inflammatory diseases such as PMO remains to be determined.


Asunto(s)
Bifidobacterium longum , Animales , Bifidobacterium , Femenino , Ratones , Osteoclastos , Receptor Toll-Like 2
6.
Mediators Inflamm ; 2021: 8817421, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34924815

RESUMEN

Short-chain fatty acids (SCFAs) produced by the gut microbiota have previously been demonstrated to play a role in numerous chronic inflammatory diseases and to be key mediators in the gut-bone signaling axis. However, the role of SCFAs in bone fracture healing and its impact on systemic inflammation during the regeneration process has not been extensively investigated yet. The aim of this study was to first determine the effects of the SCFA butyrate on key cells involved in fracture healing in vitro, namely, osteoclasts and mesenchymal stromal cells (MSCs), and second, to assess if butyrate supplementation or antibiotic therapy impacts bone healing, systemic immune status, and inflammation levels in a murine osteotomy model. Butyrate significantly reduced osteoclast formation and resorption activity in a dose-dependent manner and displayed a trend for increased calcium deposits in MSC cultures. Numerous genes associated with osteoclast differentiation were differentially expressed in osteoclast precursor cells upon butyrate exposure. In vivo, antibiotic-treated mice showed reduced SCFA levels in the cecum, as well as a distinct gut microbiome composition. Furthermore, circulating proinflammatory TNFα, IL-17a, and IL-17f levels, and bone preserving osteoprotegerin (OPG), were increased in antibiotic-treated mice compared to controls. Antibiotic-treated mice also displayed a trend towards delayed bone healing as revealed by reduced mineral apposition at the defect site and higher circulating levels of the bone turnover marker PINP. Butyrate supplementation resulted in a lower abundance of monocyte/macrophages in the bone marrow, as well as reduced circulating proinflammatory IL-6 levels compared to antibiotic- and control-treated mice. In conclusion, this study supports our hypothesis that SCFAs, in particular butyrate, are important contributors to successful bone healing by modulating key cells involved in fracture healing as well as systemic inflammation and immune responses.


Asunto(s)
Antibacterianos/farmacología , Butiratos/farmacología , Curación de Fractura/efectos de los fármacos , Inflamación/etiología , Osteoclastos/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Citocinas/análisis , Ácidos Grasos Volátiles/farmacología , Curación de Fractura/fisiología , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Mediadores de Inflamación/análisis , Levofloxacino/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoclastos/citología , Osteotomía , Rifampin/farmacología
8.
Front Immunol ; 14: 1264236, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37727785

RESUMEN

IL-32 is a recently described cytokine that performs a variety of functions under inflammatory conditions. Serum IL-32 has been shown to be elevated in several diseases, including type 2 diabetes, cancer, systemic lupus erythematosus, HIV infection, and atopic diseases including atopic dermatitis. There are nine different isoforms of IL-32, with IL-32γ being the most biologically active one. The following review summarizes the different roles of the various IL-32 isoforms in the context of skin inflammation, with a focus on atopic dermatitis.


Asunto(s)
Dermatitis Atópica , Diabetes Mellitus Tipo 2 , Infecciones por VIH , Humanos , Dermatitis Atópica/tratamiento farmacológico , Biomarcadores , Inflamación
9.
Front Immunol ; 12: 651515, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815412

RESUMEN

Staphylococcus aureus is the predominant pathogen causing osteomyelitis. Unfortunately, no immunotherapy exists to treat these very challenging and costly infections despite decades of research, and numerous vaccine failures in clinical trials. This lack of success can partially be attributed to an overreliance on murine models where the immune correlates of protection often diverge from that of humans. Moreover, S. aureus secretes numerous immunotoxins with unique tropism to human leukocytes, which compromises the targeting of immune cells in murine models. To study the response of human immune cells during chronic S. aureus bone infections, we engrafted non-obese diabetic (NOD)-scid IL2Rγnull (NSG) mice with human hematopoietic stem cells (huNSG) and analyzed protection in an established model of implant-associated osteomyelitis. The results showed that huNSG mice have increases in weight loss, osteolysis, bacterial dissemination to internal organs, and numbers of Staphylococcal abscess communities (SACs), during the establishment of implant-associated MRSA osteomyelitis compared to NSG controls (p < 0.05). Flow cytometry and immunohistochemistry demonstrated greater human T cell numbers in infected versus uninfected huNSG mice (p < 0.05), and that T-bet+ human T cells clustered around the SACs, suggesting S. aureus-mediated activation and proliferation of human T cells in the infected bone. Collectively, these proof-of-concept studies underscore the utility of huNSG mice for studying an aggressive form of S. aureus osteomyelitis, which is more akin to that seen in humans. We have also established an experimental system to investigate the contribution of specific human T cells in controlling S. aureus infection and dissemination.


Asunto(s)
Absceso/inmunología , Osteólisis/inmunología , Osteomielitis/inmunología , Infecciones Relacionadas con Prótesis/inmunología , Infecciones Estafilocócicas/inmunología , Absceso/microbiología , Absceso/patología , Animales , Modelos Animales de Enfermedad , Femenino , Trasplante de Células Madre Hematopoyéticas , Humanos , Ratones , Osteólisis/microbiología , Osteólisis/patología , Osteomielitis/microbiología , Osteomielitis/patología , Infecciones Relacionadas con Prótesis/microbiología , Infecciones Relacionadas con Prótesis/patología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/inmunología , Quimera por Trasplante/inmunología
10.
Sci Adv ; 6(20): eaaz3559, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32426497

RESUMEN

B cells contribute to immune responses through the production of immunoglobulins, antigen presentation, and cytokine production. Several B cell subsets with distinct functions and polarized cytokine profiles have been reported. In this study, we used transcriptomics analysis of immortalized B cell clones to identify an IgG4+ B cell subset with a unique function. These B cells are characterized by simultaneous expression of proangiogenic cytokines including VEGF, CYR61, ADM, FGF2, PDGFA, and MDK. Consequently, supernatants from these clones efficiently promote endothelial cell tube formation. We identified CD49b and CD73 as surface markers identifying proangiogenic B cells. Circulating CD49b+CD73+ B cells showed significantly increased frequency in patients with melanoma and eosinophilic esophagitis (EoE), two diseases associated with angiogenesis. In addition, tissue-infiltrating IgG4+CD49b+CD73+ B cells expressing proangiogenic cytokines were detected in patients with EoE and melanoma. Our results demonstrate a previously unidentified proangiogenic B cell subset characterized by expression of CD49b, CD73, and proangiogenic cytokines.


Asunto(s)
Subgrupos de Linfocitos B , Esofagitis Eosinofílica , Melanoma , Subgrupos de Linfocitos B/metabolismo , Citocinas/metabolismo , Humanos , Inmunoglobulina G , Inflamación , Integrina alfa2 , Melanoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA