Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2025): 20240083, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38917866

RESUMEN

Externally laid eggs are often responsive to environmental cues; however, it is unclear how such plasticity evolves. In Trinidad, the killifish (Anablepsoides hartii) is found in communities with and without predators. Here, killifish inhabit shallower, ephemeral habitats in sites with predators. Such shifts may increase the exposure of eggs to air and lead to possible desiccation. We compared egg-hatching plasticity between communities by rearing eggs terrestrially on peat moss or in water. The timing of hatching did not differ between communities when eggs were reared in water. Eggs from sites with predators responded to terrestrial incubation by hatching significantly earlier compared with water-reared eggs. These responses were weaker in sites with no predators. Such divergent trends show that the presence of predators is associated with evolutionary shifts in hatching plasticity. Our results provide evidence for local adaptation in embryonic plasticity at the population scale.


Asunto(s)
Evolución Biológica , Fundulidae , Animales , Fundulidae/fisiología , Fundulidae/embriología , Trinidad y Tobago , Ecosistema , Óvulo/fisiología , Adaptación Fisiológica , Conducta Predatoria , Peces Killi
2.
J Evol Biol ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38766701

RESUMEN

Intraspecific variation in vertebrate eye size is well known. Ecological factors such as light availability are often correlated with shifts in relative eye size. However, experimental tests of selection on eye size are lacking. Trinidadian killifish (Anablepsoides hartii) are found in sites that differ in predation intensity. Sites that lack predators are characterized by lower light, high killifish densities, low resource availability, and intense competition for food. We previously found that killifish in sites that lack predators have evolved a larger 'relative' eye size (eye size corrected for body size) than fish from sites with predators. Here we used transplant experiments to test how selection operates on eye size when fish that are adapted to sites with predators are translocated into sites where predators are absent. We observed a significant 'population × relative eye size' interaction; the relationship between relative eye size and a proxy for fitness (rates of individual growth) was positive in the transplanted fish. The trend was opposite for resident fish. Such results provide experimental support that larger eyes enhance fitness and are favoured in environments characterized by low light and high competition.

3.
J Exp Biol ; 227(Suppl_1)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38449326

RESUMEN

It has long been recognized that the environment experienced by parents can influence the traits of offspring (i.e. 'parental effects'). Much research has explored whether mothers respond to predictable shifts in environmental signals by modifying offspring phenotypes to best match future conditions. Many organisms experience conditions that theory predicts should favor the evolution of such 'anticipatory parental effects', but such predictions have received limited empirical support. 'Condition transfer effects' are an alternative to anticipatory effects that occur when the environment experienced by parents during development influences offspring fitness. Condition transfer effects occur when parents that experience high-quality conditions produce offspring that exhibit higher fitness irrespective of the environmental conditions in the offspring generation. Condition transfer effects are not driven by external signals but are instead a byproduct of past environmental quality. They are also likely adaptive but have received far less attention than anticipatory effects. Here, we review the generality of condition transfer effects and show that they are much more widespread than is currently appreciated. Condition transfer effects are observed across taxa and are commonly associated with experimental manipulations of resource conditions experienced by parents. Our Review calls for increased research into condition transfer effects when considering the role of parental effects in ecology and evolution.


Asunto(s)
Ecología , Ejercicio Físico , Femenino , Humanos , Madres , Fenotipo
4.
Phys Chem Chem Phys ; 26(7): 5762-5772, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38214888

RESUMEN

Fluid to solid nucleation is often investigated with the rare event method transition path sampling (TPS). I claim that the inherent irreversibility of solid nucleation, even at stationary conditions, calls into question TPS's applicability for determining solid nucleation mechanisms, especially for pre-critical behavior. Even when applied to a phenomenon which displays time reversal asymmetry like solid nucleation, TPS is a good means of exploring phase space and giving trends in post-critical structure, and its ability to facilitate nucleation rate and free energy calculations remains outstanding. Forward-only splitting and ratcheting methods such as forward flux sampling are more attractive for understanding nucleation mechanisms as they do not require time reversal symmetry, but at low driving forces may suffer from the same limitations as brute force: they may never make it to the first ratchet. Here I briefly summarize the TPS method and gas hydrate nucleation simulation literature, focusing on topics within both to facilitate a comparison of brute force hydrate nucleation to transition path sampling of hydrate nucleation. Perhaps anecdotally, the brute force technique results in more crystalline trajectories despite having higher driving forces than TPS. I maintain this difference is because of the inherent irreversibility of hydrate nucleation, meaning its pre-critical behavior cannot accurately be determined by the melting trajectories that comprise approximately half of the configurations in TPS's path ensemble.

5.
Ecol Lett ; 26(1): 53-62, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36262097

RESUMEN

The extent to which the evolution of a larger brain is adaptive remains controversial. Trinidadian killifish (Anablepsoides hartii) are found in sites that differ in predation intensity; fish that experience decreased predation and increased intraspecific competition exhibit larger brains. We evaluated the connection between brain size and fitness (survival and growth) when killifish are found in their native habitats and when fish are transplanted from sites with predators to high-competition sites that lack predators. Selection for a larger brain was absent within locally adapted populations. Conversely, there was a strong positive relationship between brain size and growth in transplanted but not resident fish in high-competition environments. We also observed significantly larger brain sizes in the transplanted fish that were recaptured at the end of the experiment versus those that were not. Our results provide experimental support that larger brains increase fitness and are favoured in high-competition environments.


Asunto(s)
Fundulidae , Animales , Ecosistema , Encéfalo
6.
J Evol Biol ; 36(5): 805-815, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37036427

RESUMEN

There exists extensive variation in eye size. Much work has provided a connection between light availability and differences in eye size across taxa. Experimental tests of the role of the light environment on the evolution of eye size are lacking. Here, we performed a selection experiment that examined the influence of light availability on shifts in eye size and the connection between eye size and phototactic (anti-predator) behaviour in Daphnia. We set-up replicate experimental populations of Daphnia, repeatedly evaluated phenotypic shifts in eye size during the ~50-day experiment, and performed a common garden experiment at the end of the experiment to test for evolutionary shifts in eye size and behaviour. Our phenotypic analyses showed that eye size rapidly diverged between the light treatments; relative eye size was consistently larger in the low versus high light treatments. Selection on eye size was also modified by variation in density as increases in Daphnia density favoured a larger eye. However, we did not observe differences in eye size between the light treatments following two generations of common garden rearing at the end of the experiment. We instead observed strong shifts in anti-predator behaviour. Daphnia from the low light treatment exhibited decreased phototactic responses to light. Our results show that decreased light relaxes selection on anti-predator behaviour. Such trends provide new insights into selection on eye size and behaviour.


Asunto(s)
Daphnia , Conducta Predatoria , Animales , Daphnia/genética
7.
Proc Natl Acad Sci U S A ; 117(51): 32535-32544, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33288702

RESUMEN

The role of phenotypic plasticity in adaptive evolution has been debated for decades. This is because the strength of natural selection is dependent on the direction and magnitude of phenotypic responses to environmental signals. Therefore, the connection between plasticity and adaptation will depend on the patterns of plasticity harbored by ancestral populations before a change in the environment. Yet few studies have directly assessed ancestral variation in plasticity and tracked phenotypic changes over time. Here we resurrected historic propagules of Daphnia spanning multiple species and lakes in Wisconsin following the invasion and proliferation of a novel predator (spiny waterflea, Bythotrephes longimanus). This approach revealed extensive genetic variation in predator-induced plasticity in ancestral populations of Daphnia It is unlikely that the standing patterns of plasticity shielded Daphnia from selection to permit long-term coexistence with a novel predator. Instead, this variation in plasticity provided the raw materials for Bythotrephes-mediated selection to drive rapid shifts in Daphnia behavior and life history. Surprisingly, there was little evidence for the evolution of trait plasticity as genetic variation in plasticity was maintained in the face of a novel predator. Such results provide insight into the link between plasticity and adaptation and highlight the importance of quantifying genetic variation in plasticity when evaluating the drivers of evolutionary change in the wild.


Asunto(s)
Adaptación Fisiológica/genética , Cladóceros/fisiología , Variación Genética , Adaptación Biológica , Animales , Conducta Animal , Evolución Biológica , Cladóceros/genética , Tamaño de la Nidada , Daphnia/genética , Daphnia/fisiología , Genética de Población , Sedimentos Geológicos , Especies Introducidas , Lagos , Rasgos de la Historia de Vida , Conducta Predatoria , Selección Genética , Wisconsin
8.
Biol Lett ; 17(6): 20210143, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34129799

RESUMEN

It is well established that environmental signals can induce phenotypic responses that persist for multiple generations. The induction of such 'transgenerational plasticity' (TGP) depends upon the ability of organisms to accurately receive and process information from environmental signals. Thus, sensory systems are likely intertwined with TGP. Here we tested the link between an environmental stressor and transgenerational responses in a component of the sensory system (eye size) that is linked to enhanced vision and ecologically relevant behaviours. We reared 45 clones of Daphnia pulicaria in the presence and absence of a low-quality resource (cyanobacteria) and evaluated shifts in relative eye size in offspring. Our results revealed divergent shifts in relative eye size within- and across-generations. Parental Daphnia that were fed cyanobacteria produced a smaller eye than Daphnia fed high-quality algae. Such differences were then reversed in the offspring generation; Daphnia whose mothers were fed cyanobacteria produced larger eyes than Daphnia that were continually fed green algae. We discuss the extent to which this maternal effect on eye size is an adaptive response linked to improved foraging.


Asunto(s)
Daphnia , Animales
9.
Proc Biol Sci ; 286(1917): 20191485, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31822257

RESUMEN

The external environment influences brain cell proliferation, and this might contribute to brain plasticity underlying adaptive behavioural changes. Additionally, internal genetic factors influence the brain cell proliferation rate. However, to date, researchers have not examined the importance of environmental versus genetic factors in causing natural variation in brain cell proliferation. Here, we examine brain cell proliferation and brain growth trajectories in free-living populations of Trinidadian killifish, Rivulus hartii, exposed to contrasting predation environments. Compared to populations without predators, populations in high predation (HP) environments exhibited higher rates of brain cell proliferation and a steeper brain growth trajectory (relative to body size). To test whether these differences in the wild persist in a common garden environment, we reared first-generation fish originating from both predation environments in uniform laboratory conditions. Just as in the wild, brain cell proliferation and brain growth in the common garden were greater in HP populations than in no predation populations. The differences in cell proliferation observed across the brain in both the field and common garden studies indicate that the differences are probably genetically based and are mediated by evolutionary shifts in overall brain growth and life-history traits.


Asunto(s)
Encéfalo/fisiología , Fundulidae/fisiología , Conducta Predatoria , Animales , Evolución Biológica , Proliferación Celular/fisiología , Masculino , Fenotipo
10.
Mol Ecol ; 27(23): 4744-4757, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30269397

RESUMEN

Invasive species provide powerful in situ experimental systems for studying evolution in response to selective pressures in novel habitats. While research has shown that phenotypic evolution can occur rapidly in nature, few examples exist of genomewide adaptation on short "ecological" timescales. Burmese pythons (Python molurus bivittatus) have become a successful and impactful invasive species in Florida over the last 30 years despite major freeze events that caused high python mortality. We sampled Florida Burmese pythons before and after a major freeze event in 2010 and found evidence for directional selection in genomic regions enriched for genes associated with thermosensation, behaviour and physiology. Several of these genes are linked to regenerative organ growth, an adaptive response that modulates organ size and function with feeding and fasting in pythons. Independent histological and functional genomic data sets provide additional layers of support for a contemporary shift in invasive Burmese python physiology. In the Florida population, a shift towards maintaining an active digestive system may be driven by the fitness benefits of maintaining higher metabolic rates and body temperature during freeze events. Our results suggest that a synergistic interaction between ecological and climatic selection pressures has driven adaptation in Florida Burmese pythons, demonstrating the often-overlooked potential of rapid adaptation to influence the success of invasive species.


Asunto(s)
Adaptación Fisiológica , Boidae/genética , Clima , Especies Introducidas , Animales , Boidae/fisiología , Evolución Molecular , Florida , Genoma , Selección Genética
11.
Proc Biol Sci ; 284(1858)2017 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-28679729

RESUMEN

Invasive species have extensive negative consequences for biodiversity and ecosystem health. Novel species also drive contemporary evolution in many native populations, which could mitigate or amplify their impacts on ecosystems. The predatory zooplankton Bythotrephes longimanus invaded lakes in Wisconsin, USA, in 2009. This invasion caused precipitous declines in zooplankton prey (Daphnia pulicaria), with cascading impacts on ecosystem services (water clarity). Here, we tested the link between Bythotrephes invasion, evolution in Daphnia and post-invasion ecological dynamics using 15 years of long-term data in conjunction with comparative experiments. Invasion by Bythotrephes is associated with rapid increases in the body size of Daphnia Laboratory experiments revealed that such shifts have a genetic component; third-generation laboratory-reared Daphnia from 'invaded' lakes are significantly larger and exhibit greater reproductive effort than individuals from 'uninvaded' lakes. This trajectory of evolution should accelerate Daphnia population growth and enhance population persistence. We tested this prediction by comparing analyses of long-term data with laboratory-based simulations, and show that rapid evolution in Daphnia is associated with increased population growth in invaded lakes.


Asunto(s)
Evolución Biológica , Cladóceros/genética , Ecosistema , Especies Introducidas , Animales , Daphnia , Lagos , Conducta Predatoria , Wisconsin
12.
Mol Ecol ; 26(19): 5003-5015, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28628257

RESUMEN

Research has shown that a change in environmental conditions can alter the expression of traits during development (i.e., "within-generation phenotypic plasticity") as well as induce heritable phenotypic responses that persist for multiple generations (i.e., "transgenerational plasticity", TGP). It has long been assumed that shifts in gene expression are tightly linked to observed trait responses at the phenotypic level. Yet, the manner in which organisms couple within- and TGP at the molecular level is unclear. Here we tested the influence of fish predator chemical cues on patterns of gene expression within- and across generations using a clone of Daphnia ambigua that is known to exhibit strong TGP but weak within-generation plasticity. Daphnia were reared in the presence of predator cues in generation 1, and shifts in gene expression were tracked across two additional asexual experimental generations that lacked exposure to predator cues. Initial exposure to predator cues in generation 1 was linked to ~50 responsive genes, but such shifts were 3-4× larger in later generations. Differentially expressed genes included those involved in reproduction, exoskeleton structure and digestion; major shifts in expression of genes encoding ribosomal proteins were also identified. Furthermore, shifts within the first-generation and transgenerational shifts in gene expression were largely distinct in terms of the genes that were differentially expressed. Such results argue that the gene expression programmes involved in within- vs. transgeneration plasticity are fundamentally different. Our study provides new key insights into the plasticity of gene expression and how it relates to phenotypic plasticity in nature.


Asunto(s)
Daphnia/genética , Cadena Alimentaria , Expresión Génica , Patrón de Herencia , Animales , Ambiente , Peces , Fenotipo , Conducta Predatoria
13.
Proc Biol Sci ; 283(1834)2016 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-27412278

RESUMEN

Vertebrates exhibit extensive variation in relative brain size. It has long been assumed that this variation is the product of ecologically driven natural selection. Yet, despite more than 100 years of research, the ecological conditions that select for changes in brain size are unclear. Recent laboratory selection experiments showed that selection for larger brains is associated with increased survival in risky environments. Such results lead to the prediction that increased predation should favour increased brain size. Work on natural populations, however, foreshadows the opposite trajectory of evolution; increased predation favours increased boldness, slower learning, and may thereby select for a smaller brain. We tested the influence of predator-induced mortality on brain size evolution by quantifying brain size variation in a Trinidadian killifish, Rivulus hartii, from communities that differ in predation intensity. We observed strong genetic differences in male (but not female) brain size between fish communities; second generation laboratory-reared males from sites with predators exhibited smaller brains than Rivulus from sites in which they are the only fish present. Such trends oppose the results of recent laboratory selection experiments and are not explained by trade-offs with other components of fitness. Our results suggest that increased male brain size is favoured in less risky environments because of the fitness benefits associated with faster rates of learning and problem-solving behaviour.


Asunto(s)
Encéfalo/anatomía & histología , Ciprinodontiformes/anatomía & histología , Conducta Predatoria , Selección Genética , Animales , Femenino , Masculino
14.
Proc Biol Sci ; 283(1823)2016 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-26817775

RESUMEN

Environmental signals can induce phenotypic changes that span multiple generations. Along with phenotypic responses that occur during development (i.e. 'within-generation' plasticity), such 'transgenerational plasticity' (TGP) has been documented in a diverse array of taxa spanning many environmental perturbations. New theory predicts that temporal stability is a key driver of the evolution of TGP. We tested this prediction using natural populations of zooplankton from lakes in Connecticut that span a large gradient in the temporal dynamics of predator-induced mortality. We reared more than 120 clones of Daphnia ambigua from nine lakes for multiple generations in the presence/absence of predator cues. We found that temporal variation in mortality selects for within-generation plasticity while consistently strong (or weak) mortality selects for increased TGP. Such results provide us the first evidence for local adaptation in TGP and argue that divergent ecological conditions select for phenotypic responses within and across generations.


Asunto(s)
Adaptación Fisiológica , Daphnia/fisiología , Peces/fisiología , Conducta Predatoria , Migración Animal , Animales , Connecticut , Ecosistema , Lagos , Estaciones del Año , Factores de Tiempo , Zooplancton
15.
Phys Chem Chem Phys ; 18(23): 15602-8, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27222203

RESUMEN

By performing molecular dynamics simulations to form a hydrate with a methane nano-bubble in liquid water at 250 K and 50 MPa, we report how different ensembles, such as the NPT, NVT, and NVE ensembles, affect the nucleation kinetics of the methane hydrate. The nucleation trajectories are monitored using the face-saturated incomplete cage analysis (FSICA) and the mutually coordinated guest (MCG) order parameter (OP). The nucleation rate and the critical nucleus are obtained using the mean first-passage time (MFPT) method based on the FS cages and the MCG-1 OPs, respectively. The fitting results of MFPT show that hydrate nucleation and growth are coupled together, consistent with the cage adsorption hypothesis which emphasizes that the cage adsorption of methane is a mechanism for both hydrate nucleation and growth. For the three different ensembles, the hydrate nucleation rate is quantitatively ordered as follows: NPT > NVT > NVE, while the sequence of hydrate crystallinity is exactly reversed. However, the largest size of the critical nucleus appears in the NVT ensemble, rather than in the NVE ensemble. These results are helpful for choosing a suitable ensemble when to study hydrate formation via computer simulations, and emphasize the importance of the order degree of the critical nucleus.

16.
Proc Biol Sci ; 282(1798): 20142205, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25392477

RESUMEN

Much work has shown that the environment can induce non-genetic changes in phenotype that span multiple generations. Theory predicts that predictable environmental variation selects for both increased within- and across-generation responses. Yet, to the best of our knowledge, there are no empirical tests of this prediction. We explored the relationship between within- versus across-generation plasticity by evaluating the influence of predator cues on the life-history traits of Daphnia ambigua. We measured the duration of predator-induced transgenerational effects, determined when transgenerational responses are induced, and quantified the cues that activate transgenerational plasticity. We show that predator exposure during embryonic development causes earlier maturation and increased reproductive output. Such effects are detectable two generations removed from predator exposure and are similar in magnitude in response to exposure to cues emitted by injured conspecifics. Moreover, all experimental contexts and traits yielded a negative correlation between within- versus across-generation responses. That is, responses to predator cues within- and across-generations were opposite in sign and magnitude. Although many models address transgenerational plasticity, none of them explain this apparent negative relationship between within- and across-generation plasticities. Our results highlight the need to refine the theory of transgenerational plasticity.


Asunto(s)
Daphnia/anatomía & histología , Daphnia/genética , Ambiente , Peces/fisiología , Conducta Predatoria , Adaptación Biológica , Animales , Femenino , Cadena Alimentaria , Percepción Olfatoria , Fenotipo
17.
Langmuir ; 31(22): 6186-96, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-25927419

RESUMEN

Blockage of pipelines by formation and accumulation of clathrate hydrates of natural gases (also called gas hydrates) can compromise project safety and economics in oil and gas operations, particularly at high pressures and low temperatures such as those found in subsea or arctic environments. Cyclopentane (CyC5) hydrate has attracted interest as a model system for studying natural gas hydrates, because CyC5, like typical natural gas hydrate formers, is almost fully immiscible in water; and thus CyC5 hydrate formation is governed not only by thermodynamic phase considerations but also kinetic factors such as the hydrocarbon/water interfacial area, as well as mass and heat transfer constraints, as for natural gas hydrates. We present a macroscale investigation of the formation and adhesion strength of CyC5 hydrate deposits on bilayer polymer coatings with a range of wettabilities. The polymeric bilayer coatings are developed using initiated chemical vapor deposition (iCVD) of a mechanically robust and densely cross-linked polymeric base layer (polydivinylbenzene or pDVB) that is capped with a covalently attached thin hydrate-phobic fluorine-rich top layer (poly(perfluorodecyl acrylate) or pPFDA). The CyC5 hydrates are formed from CyC5-in-water emulsions, and differential scanning calorimetry (DSC) is used to confirm the thermal dissociation properties of the solid hydrate deposits. We also investigate the adhesion of the CyC5 hydrate deposits on bare and bilayer polymer-coated silicon and steel substrates. Goniometric measurements with drops of CyC5-in-water emulsions on the coated steel substrates exhibit advancing contact angles of 148.3 ± 4.5° and receding contact angles of 142.5 ± 9.8°, indicating the strongly emulsion-repelling nature of the iCVD coatings. The adhesion strength of the CyC5 hydrate deposits is reduced from 220 ± 45 kPa on rough steel substrates to 20 ± 17 kPa on the polymer-coated steel substrates. The measured strength of CyC5 hydrate adhesion is found to correlate very well with the work of adhesion between the emulsion droplets used to form the CyC5 hydrate and the underlying substrates.

18.
Phys Chem Chem Phys ; 17(14): 8870-6, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25743115

RESUMEN

The results of six high-precision constant energy molecular dynamics (MD) simulations initiated from methane-water systems equilibrated at 80 MPa and 250 K indicate that methane hydrates can nucleate via multiple pathways. Five trajectories nucleate to an amorphous solid. One trajectory nucleates to a structure-I hydrate template with long-range order which spans the simulation box across periodic boundaries despite the presence of several defects. While experimental and simulation data for hydrate nucleation with different time- and length-scales suggest that there may exist multiple pathways for nucleation, including metastable intermediates and the direct formation of the globally-stable phase, this work provides the most compelling evidence that direct formation to the globally stable crystalline phase is one of the multiple pathways available for hydrate nucleation.

19.
J Anim Ecol ; 83(6): 1279-88, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24810960

RESUMEN

The evolutionary theory of senescence predicts that increased rates of extrinsic mortality select for faster declines in fertility and survival with age. One predicted mechanism is that increased mortality favours alleles that enhance fitness early in life at the expense of survival or reproduction later in life (antagonistic pleiotropy). We tested these predictions in natural populations of Daphnia ambigua from lakes that vary in the severity and duration of fish predation. Daphnia are found in lakes with (i) anadromous alewife (Alosa pseudoharengus) that migrate between marine and freshwater, (ii) permanent landlocked alewife and (iii) no alewife. Daphnia are rare year-round in 'landlocked lakes' and are seasonally eliminated from the water column in 'anadromous lakes' due to the very strong predatory impact of anadromous alewife on populations of zooplankton. Previous work has also shown that intense seasonal bouts of predation by anadromous alewife has selected for increased allocation towards growth and reproduction in Daphnia found in lakes with anadromous alewife. Such variation in the risk of mortality and the expression of life-history traits early in life provides the raw materials to test the evolutionary theory of ageing. We reared replicate populations of Daphnia from all three lake types and quantified lifetime rates of offspring production and intrinsic survival. We found no differences in age-related declines in fertility or survival. Daphnia from anadromous lakes produced significantly more offspring throughout their lifetime despite no differences in life span or in the number of reproductive bouts compared with Daphnia from lakes with landlocked and no alewife. The lack of divergence in ageing contradicts the prediction that elevated mortality rates drive evolutionary shifts in ageing. We reconcile these results by considering the predictions of theoretical frameworks that incorporate feedbacks associated with increased mortality such as density- and condition-dependent processes. Our results, which are better explained by a consideration of these processes, thus call for a greater consideration of models that more explicitly consider the ecology of focal organisms.


Asunto(s)
Envejecimiento , Daphnia/fisiología , Peces/fisiología , Cadena Alimentaria , Conducta Predatoria , Animales , Evolución Biológica , Connecticut , Fertilidad , Lagos , Longevidad , Selección Genética
20.
Ecol Evol ; 14(6): e11503, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38932947

RESUMEN

Eco-evolutionary experiments are typically conducted in semi-unnatural controlled settings, such as mesocosms; yet inferences about how evolution and ecology interact in the real world would surely benefit from experiments in natural uncontrolled settings. Opportunities for such experiments are rare but do arise in the context of restoration ecology-where different "types" of a given species can be introduced into different "replicate" locations. Designing such experiments requires wrestling with consequential questions. (Q1) Which specific "types" of a focal species should be introduced to the restoration location? (Q2) How many sources of each type should be used-and should they be mixed together? (Q3) Which specific source populations should be used? (Q4) Which type(s) or population(s) should be introduced into which restoration sites? We recently grappled with these questions when designing an eco-evolutionary experiment with threespine stickleback (Gasterosteus aculeatus) introduced into nine small lakes and ponds on the Kenai Peninsula in Alaska that required restoration. After considering the options at length, we decided to use benthic versus limnetic ecotypes (Q1) to create a mixed group of colonists from four source populations of each ecotype (Q2), where ecotypes were identified based on trophic morphology (Q3), and were then introduced into nine restoration lakes scaled by lake size (Q4). We hope that outlining the alternatives and resulting choices will make the rationales clear for future studies leveraging our experiment, while also proving useful for investigators considering similar experiments in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA