Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Phys Chem Chem Phys ; 20(5): 3063-3072, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-28721414

RESUMEN

Broadband SFG spectroscopy is shown to offer considerable advantages over scanning systems in terms of signal-to-noise ratios when probing well-formed single-component supported lipid bilayers formed from zwitterionic lipids with PC headgroups. The SFG spectra obtained from bilayers formed from DOPC, POPC, DLPC, DMPC, DPPC and DSPC show a common peak at ∼2980 cm-1, which is subject to interference between the C-H and the O-H stretches from the aqueous phase, while membranes having transition temperatures above the laboratory temperature produce SFG spectra with at least two additional peaks, one at ∼2920 cm-1 and another at ∼2880 cm-1. The results validate spectroscopic and structural data from SFG experiments utilizing asymmetric bilayers in which one leaflet differs from the other in the extent of deuteration. Differences in H2O-D2O exchange experiments reveal that the lineshapes of the broadband SFG spectra are significantly influenced by interference from OH oscillators in the aqueous phase, even when those oscillators are not probed by the incident infrared light in our broadband setup. In the absence of spectral interference from the OH stretches of the solvent, the alkyl chain terminal methyl group of the bilayer is found to be tilted at an angle of 15° to 35° from the surface normal.

2.
Anal Chem ; 88(5): 2952-7, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26813414

RESUMEN

The cell is the basic unit of biology and protein expression drives cellular function. Tracking protein expression in single cells enables the study of cellular pathways and behavior but requires methodologies sensitive enough to detect low numbers of protein molecules with a wide dynamic range to distinguish unique cells and quantify population distributions. This study presents an ultrasensitive and automated approach for quantifying phenotypic responses with single cell resolution using single molecule array (SiMoA) technology. We demonstrate how prostate specific antigen (PSA) expression varies over several orders of magnitude between single prostate cancer cells and how PSA expression shifts with genetic drift. Single cell SiMoA introduces a straightforward process that is capable of detecting both high and low protein expression levels. This technique could be useful for understanding fundamental biology and may eventually enable both earlier disease detection and targeted therapy.


Asunto(s)
Neoplasias de la Próstata/patología , Proteínas/análisis , Humanos , Masculino , Antígeno Prostático Específico/análisis
3.
J Am Chem Soc ; 135(46): 17339-48, 2013 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-24156735

RESUMEN

Label-free studies carried out under aqueous phase conditions quantify the number of Mg(2+) ions binding to surface-immobilized T40 sequences, the subsequent reordering of DNA on the surface, and the consequences of Mg(2+) binding for DNA-DNA interactions. Second harmonic generation measurements indicate that, within error, 18-20 Mg(2+) ions are bound to the T40 strand at saturation and that the metal-DNA interaction is associated with a near 30% length contraction of the strand. Structural reordering, evaluated using vibrational sum frequency generation, atomic force microscopy, and dynamic light scattering, is attributed to increased charge screening as the Mg(2+) ions bind to the negatively charged DNA, reducing repulsive Coulomb forces between nucleotides and allowing the DNA single strands to collapse or coil upon themselves. The impact of Mg(2+) binding on DNA hybridization and duplex stability is assessed with spherical nucleic acid (SNA) gold nanoparticle conjugates in order to determine an optimal working range of Mg(2+) concentrations for DNA-DNA interactions in the absence of NaCl. The findings are consistent with a charge titration effect in which, in the absence of NaCl, (1) hybridization does not occur at room temperature if an average of 17.5 or less Mg(2+) ions are bound per T40 strand, which is not reached until the bulk Mg(2+) concentration approaches 0.5 mM; (2) hybridization proceeds, albeit with low duplex stability having an average Tm of 31(3)°C, if an average of 17.5-18.0 Mg(2+) ions are bound; and (3) highly stable duplexes having a Tm of 64(2)°C form if 18.5-19.0 Mg(2+) ions are bound, corresponding to saturation of the T40 strand.


Asunto(s)
ADN/química , Magnesio/química , Oligonucleótidos/química , Timina/química , Iones/química , Estructura Molecular , Propiedades de Superficie
4.
J Am Chem Soc ; 134(28): 11726-33, 2012 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-22708575

RESUMEN

Organic thin film transistor (OTFT) performance is highly materials interface-dependent, and dramatic performance enhancements can be achieved by properly modifying the semiconductor/gate dielectric interface. However, the origin of these effects is not well understood, as this is a classic "buried interface" problem that has traditionally been difficult to address. Here we address the question of how n-octadecylsilane (OTS)-derived self-assembled monolayers (SAMs) on Si/SiO(2) gate dielectrics affect the OTFT performance of the archetypical small-molecule p-type semiconductors P-BTDT (phenylbenzo[d,d]thieno[3,2-b;4,5-b]dithiophene) and pentacene using combined in situ sum frequency generation spectroscopy, atomic force microscopy, and grazing incidence and reflectance X-ray scattering. The molecular order and orientation of the OTFT components at the dielectric/semiconductor interface is probed as a function of SAM growth mode in order to understand how this impacts the overlying semiconductor growth mode, packing, crystallinity, and carrier mobility, and hence, transistor performance. This understanding, using a new, humidity-specific growth procedure, leads to a reproducible, scalable process for highly ordered OTS SAMs, which in turn nucleates highly ordered p-type semiconductor film growth, and optimizes OTFT performance. Surprisingly, the combined data reveal that while SAM molecular order dramatically impacts semiconductor crystalline domain size and carrier mobility, it does not significantly influence the local orientation of the overlying organic semiconductor molecules.

5.
J Am Chem Soc ; 132(9): 3013-9, 2010 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-20151637

RESUMEN

Using ultrahigh vacuum (UHV) scanning tunneling microscopy (STM), many olefins have been shown to self-assemble on the hydrogen-passivated Si(100)-2 x 1 surface into one-dimensional nanostructures. This paper demonstrates that similar one-dimensional nanostructures can also be realized using alkynes. In particular, UHV STM, sum frequency generation (SFG), and density functional theory (DFT) are employed to study the growth mechanism and binding configuration of phenylacetylene (PA) one-dimensional nanostructures on the Si(100)-2 x 1:H surface. Molecular-resolution UHV STM images reveal the binding position and spacing of PA with respect to the underlying silicon dimer rows. Furthermore, UHV STM characterization of heteromolecular one-dimensional nanostructures of styrene and PA shows distinct electronic contrast between the two molecules, which is confirmed using simulated STM images derived from DFT and provides insight into the nature of PA binding to silicon. Additional evidence from SFG measurements corroborates the conclusion that the terminal carbon atoms of PA retain pi-conjugation following reaction to the Si(100)-2 x 1:H surface.


Asunto(s)
Acetileno/análogos & derivados , Nanoestructuras/química , Silicio/química , Acetileno/química , Simulación por Computador , Microscopía de Túnel de Rastreo , Modelos Químicos , Tamaño de la Partícula , Propiedades de Superficie , Vacio
6.
J Phys Chem A ; 113(31): 8985-93, 2009 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-19591476

RESUMEN

Important mechanistic differences regarding C=C double-bond oxidation processes under ozone-limited and ozone-rich reaction conditions for cyclohexene-functionalized fused silica substrates serving as model systems for studying heterogeneous C=C double bond oxidation chemistry in the troposphere are evaluated. By using broadband vibrational sum frequency generation (SFG), we track heterogeneous ozone reactions in real time. Ozone levels span three orders of magnitude and represent environments ranging from pristine remote continental regions to highly polluted urban centers, ranging from 30 ppb to 3 ppm (from 7 x 10(11) molecules cm(-3) to 7 x 10(13) molecules cm(-3)). We determine reaction rates and reactive uptake coefficients (gamma values). At these tropospherically relevant ozone levels, the heterogeneous reaction rates follow a Langmuir-Hinshelwood-type mechanism. The product formation rates, which we determine as a function of ozone concentrations, are found to be half of the olefin reaction rates. This ratio is consistent with the previously proposed reaction pathway involving the breaking of one C=C double bond containing two olefinic CH moieties to form a product containing only one methyl group and one polar carbonyl moiety. Contact angle histograms show that out of a total of 60 measurements, there are about 25 more measurements with contact angles up to ten degrees below the mean recorded prior to reaction when ozone levels resemble remote continental conditions (50 ppb) than when ozone levels resemble urban conditions (1 ppm). The implication of these results are that the methyl formation pathway in heterogeneous ozonolysis may be less favorable than the carboxylic acid- and secondary ozonide-production pathway for ozone-limited conditions (i.e., in the remote continental troposphere or during urban nighttime) as opposed to ozone-rich (i.e., polluted urban atmosphere) conditions.

7.
Sci Rep ; 5: 11034, 2015 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-26052106

RESUMEN

The early diagnosis of cancers and continued monitoring of tumor growth would be greatly facilitated by the development of a blood-based, non-invasive, screening technique for early cancer detection. Current technologies for cancer screening and detection typically rely on imaging techniques or blood tests that are not accurate or sensitive enough to definitively diagnose cancer at its earliest stages or predict biologic outcomes. By utilizing Single Molecule Arrays (SiMoA), an ultra-sensitive enzyme-linked immunosorbent assay (ELISA) technique, we were able to measure increasing levels of prostate specific antigen (PSA) within murine serum over time, which we attribute to tumor development. The measured concentrations of PSA were well below the detectable limits of both a leading clinical diagnostic PSA ELISA assay as well as a commercial ultra-sensitive PSA assay. Our work benchmarks the role of SiMoA as a vital tool in monitoring previously non-detectable protein biomarkers in serum for early cancer detection and offers significant potential as a non-invasive platform for the monitoring of early stage cancer.


Asunto(s)
Calicreínas/sangre , Monitoreo Fisiológico/métodos , Neoplasias Experimentales/sangre , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/sangre , Análisis por Matrices de Proteínas/métodos , Animales , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Estadificación de Neoplasias , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA