Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Pharmacol Exp Ther ; 384(1): 163-172, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36273822

RESUMEN

M3258 is an orally bioavailable, potent, selective, reversible inhibitor of the large multifunctional peptidase 7 (LMP7, ß5i, PSMB8) proteolytic subunit of the immunoproteasome, a component of the cellular protein degradation machinery, highly expressed in malignant hematopoietic cells including multiple myeloma. Here we describe the fit-for-purpose pharmacokinetic (PK)/pharmacodynamic (PD)/efficacy modeling of M3258 based on preclinical data from several species. The inhibition of LMP7 activity (PD) and tumor growth (efficacy) were tested in human multiple myeloma xenografts in mice. PK and efficacy data were correlated yielding a free M3258 concentration of 45 nM for half-maximal tumor growth inhibition (KC50). As M3258 only weakly inhibits LMP7 in mouse cells, both in vitro and in vivo bridging studies were performed in rats, monkeys, and dogs for translational modeling. These data indicated that the PD response in human xenograft models was closely reflected in dog PBMCs. A PK/PD model was established, predicting a free IC50 value of 9 nM for M3258 in dogs in vivo, in close agreement with in vitro measurements. In parallel, the human PK parameters of M3258 were predicted by various approaches including in vitro extrapolation and allometric scaling. Using PK/PD/efficacy simulations, the efficacious dose range and corresponding PD response in human were predicted. Taken together, these efforts supported the design of a phase Ia study of M3258 in multiple myeloma patients (NCT04075721). At the lowest tested dose level, the predicted exposure matched well with the observed exposure while the duration of LMP7 inhibition was underpredicted by the model. SIGNIFICANCE STATEMENT: M3258 is a novel inhibitor of the immunoproteasome subunit LMP7. The human PK and human efficacious dose range of M3258 were predicted using in vitro-in vivo extrapolation and allometric scaling methods together with a fit-for-purpose PK/PD and efficacy model based on data from several species. A comparison with data from the Phase Ia clinical study showed that the human PK was accurately predicted, while the extent and duration of PD response were more pronounced than estimated.


Asunto(s)
Mieloma Múltiple , Humanos , Ratas , Ratones , Animales , Perros , Mieloma Múltiple/tratamiento farmacológico , Modelos Biológicos
2.
Mol Cancer Ther ; 22(7): 833-843, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-36999986

RESUMEN

The mesenchymal-epithelial transition factor (MET) proto-oncogene encodes the MET receptor tyrosine kinase. MET aberrations drive tumorigenesis in several cancer types through a variety of molecular mechanisms, including MET mutations, gene amplification, rearrangement, and overexpression. Therefore, MET is a therapeutic target and the selective type Ib MET inhibitor, tepotinib, was designed to potently inhibit MET kinase activity. In vitro, tepotinib inhibits MET in a concentration-dependent manner irrespective of the mode of MET activation, and in vivo, tepotinib exhibits marked, dose-dependent antitumor activity in MET-dependent tumor models of various cancer indications. Tepotinib penetrates the blood-brain barrier and demonstrates strong antitumor activity in subcutaneous and orthotopic brain metastasis models, in-line with clinical activity observed in patients. MET amplification is an established mechanism of resistance to EGFR tyrosine kinase inhibitors (TKI), and preclinical studies show that tepotinib in combination with EGFR TKIs can overcome this resistance. Tepotinib is currently approved for the treatment of adult patients with advanced or metastatic non-small cell lung cancer harboring MET exon 14 skipping alterations. This review focuses on the pharmacology of tepotinib in preclinical cancer models harboring MET alterations and demonstrates that strong adherence to the principles of the Pharmacological Audit Trail may result in a successful discovery and development of a precision medicine.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-met , Adulto , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Receptores ErbB , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
3.
J Med Chem ; 64(14): 10230-10245, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34228444

RESUMEN

Proteasomes are broadly expressed key components of the ubiquitin-dependent protein degradation pathway containing catalytically active subunits (ß1, ß2, and ß5). LMP7 (ß5i) is a subunit of the immunoproteasome, an inducible isoform that is predominantly expressed in hematopoietic cells. Clinically effective pan-proteasome inhibitors for the treatment of multiple myeloma (MM) nonselectively target LMP7 and other subunits of the constitutive proteasome and immunoproteasome with comparable potency, which can limit the therapeutic applicability of these drugs. Here, we describe the discovery and structure-based hit optimization of novel amido boronic acids, which selectively inhibit LMP7 while sparing all other subunits. The exploitation of structural differences between the proteasome subunits culminated in the identification of the highly potent, exquisitely selective, and orally available LMP7 inhibitor 50 (M3258). Based on the strong antitumor activity observed with M3258 in MM models and a favorable preclinical data package, a phase I clinical trial was initiated in relapsed/refractory MM patients.


Asunto(s)
Descubrimiento de Drogas , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Inhibidores de Proteasoma/síntesis química , Inhibidores de Proteasoma/química , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , Relación Estructura-Actividad
4.
Mol Cancer Ther ; 20(8): 1378-1387, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34045234

RESUMEN

Large multifunctional peptidase 7 (LMP7/ß5i/PSMB8) is a proteolytic subunit of the immunoproteasome, which is predominantly expressed in normal and malignant hematolymphoid cells, including multiple myeloma, and contributes to the degradation of ubiquitinated proteins. Described herein for the first time is the preclinical profile of M3258; an orally bioavailable, potent, reversible and highly selective LMP7 inhibitor. M3258 demonstrated strong antitumor efficacy in multiple myeloma xenograft models, including a novel model of the human bone niche of multiple myeloma. M3258 treatment led to a significant and prolonged suppression of tumor LMP7 activity and ubiquitinated protein turnover and the induction of apoptosis in multiple myeloma cells both in vitro and in vivo Furthermore, M3258 showed superior antitumor efficacy in selected multiple myeloma and mantle cell lymphoma xenograft models compared with the approved nonselective proteasome inhibitors bortezomib and ixazomib. The differentiated preclinical profile of M3258 supported the initiation of a phase I study in patients with multiple myeloma (NCT04075721).


Asunto(s)
Ácidos Borónicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Furanos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Mieloma Múltiple/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/química , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis , Compuestos de Boro/administración & dosificación , Bortezomib/administración & dosificación , Proliferación Celular , Femenino , Glicina/administración & dosificación , Glicina/análogos & derivados , Humanos , Ratones , Ratones Desnudos , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Proteolisis , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA