Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Genesis ; 60(4-5): e23475, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35451548

RESUMEN

LRWD1, also known as ORCA, is a nuclear protein functioning in multiple biological processes. Using its WD40 domain LRWD1 interacts with repressive histone marks and maintains the silencing of heterochromatin regions in mammalian cells. ORCA also associates with the origin recognition complex (ORC) and facilitates prereplication complex formation at late-replicating origins. However, whether LRWD1 plays a role during development and the functional significance of LRWD1 in vivo remains largely unknown. Using gene-trap approach we generated Lrwd1 knockout mice and examined the expression of Lrwd1 during embryonic development. We found that Lrwd1 is ubiquitously expressed in the majority of the developing mouse embryo. Depletion of LRWD1 did not affect embryonic development but the postnatal growth of the homozygous mutants is retarded. In vitro cultured mouse embryonic fibroblasts (MEFs) depleted of LRWD1 displayed a reduced proliferation compared to wild type cells. We also showed that the knockout of Lrwd1 in MEFs increased the expression of the epigenetically silenced repetitive elements but with minimal effect on the expression of protein coding genes. Together, these results suggest that LRWD1 plays an important, but not essential, role in postnatal development by regulating cell proliferation likely through modulating DNA replication.


Asunto(s)
Fibroblastos , Heterocromatina , Proteínas de Microtúbulos , Animales , Proliferación Celular/genética , ADN/metabolismo , Fibroblastos/metabolismo , Heterocromatina/genética , Ratones , Proteínas de Microtúbulos/genética , Proteínas de Microtúbulos/metabolismo , Unión Proteica , Secuencias Repetitivas de Ácidos Nucleicos , Factores de Transcripción/genética
2.
J Biol Chem ; 296: 100374, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33548228

RESUMEN

The recent discovery of the cancer-associated E76K mutation in histone H2B (H2BE76-to-K) in several types of cancers revealed a new class of oncohistone. H2BE76K weakens the stability of histone octamers, alters gene expression, and promotes colony formation. However, the mechanism linking the H2BE76K mutation to cancer development remains largely unknown. In this study, we knock in the H2BE76K mutation in MDA-MB-231 breast cancer cells using CRISPR/Cas9 and show that the E76K mutant histone H2B preferentially localizes to genic regions. Interestingly, genes upregulated in the H2BE76K mutant cells are enriched for the E76K mutant H2B and are involved in cell adhesion and proliferation pathways. We focused on one H2BE76K target gene, ADAM19 (a disintegrin and metalloproteinase-domain-containing protein 19), a gene highly expressed in various human cancers including breast invasive carcinoma, and demonstrate that H2BE76K directly promotes ADAM19 transcription by facilitating efficient transcription along the gene body. ADAM19 depletion reduced the colony formation ability of the H2BE76K mutant cells, whereas wild-type MDA-MB-231 cells overexpressing ADAM19 mimics the colony formation phenotype of the H2BE76K mutant cells. Collectively, our data demonstrate the mechanism by which H2BE76K deregulates the expression of genes that control oncogenic properties through a combined effect of its specific genomic localization and nucleosome destabilization effect.


Asunto(s)
Proteínas ADAM/genética , Neoplasias de la Mama/genética , Histonas/genética , Proteínas ADAM/metabolismo , Neoplasias de la Mama/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Femenino , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Histonas/metabolismo , Humanos , Mutación/genética , Nucleosomas , Oncogenes/genética , Polimorfismo de Nucleótido Simple/genética
3.
Nat Commun ; 14(1): 4978, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591871

RESUMEN

Skeletal muscle stem cells (also called satellite cells, SCs) are important for maintaining muscle tissue homeostasis and damage-induced regeneration. However, it remains poorly understood how SCs enter cell cycle to become activated upon injury. Here we report that AP-1 family member ATF3 (Activating Transcription Factor 3) prevents SC premature activation. Atf3 is rapidly and transiently induced in SCs upon activation. Short-term deletion of Atf3 in SCs accelerates acute injury-induced regeneration, however, its long-term deletion exhausts the SC pool and thus impairs muscle regeneration. The Atf3 loss also provokes SC activation during voluntary exercise and enhances the activation during endurance exercise. Mechanistically, ATF3 directly activates the transcription of Histone 2B genes, whose reduction accelerates nucleosome displacement and gene transcription required for SC activation. Finally, the ATF3-dependent H2B expression also prevents genome instability and replicative senescence in SCs. Therefore, this study has revealed a previously unknown mechanism for preserving the SC population by actively suppressing precocious activation, in which ATF3 is a key regulator.


Asunto(s)
Factor de Transcripción Activador 3 , Fibras Musculares Esqueléticas , Factor de Transcripción Activador 3/genética , Ciclo Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Células Madre
4.
Biomedicines ; 9(6)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205231

RESUMEN

Oncohistones have emerged as a new area in cancer epigenetics research. Recent efforts to catalogue histone mutations in cancer patients have revealed thousands of histone mutations across different types of cancer. In contrast to previously identified oncohistones (H3K27M, H3G34V/R, and H3K36M), where the mutations occur on the tail domain and affect histone post-translational modifications, the majority of the newly identified mutations are located within the histone fold domain and affect gene expression via distinct mechanisms. The recent characterization of the selected H2B has revealed previously unappreciated roles of oncohistones in nucleosome stability, chromatin accessibility, and chromatin remodeling. This review summarizes recent advances in the study of H2B oncohistones and other emerging oncohistones occurring on other types of histones, particularly those occurring on the histone fold domain.

5.
Curr Pharmacol Rep ; 4(4): 292-300, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30101054

RESUMEN

Histone modifications are one form of epigenetic information that relate closely to gene regulation. Aberrant histone methylation caused by alteration in chromatin-modifying enzymes has long been implicated in cancers. More recently, recurrent histone mutations have been identified in multiple cancers and have been shown to impede histone methylation. All three histone mutations (H3K27M, H3K36M, and H3G34V/R) identified result in amino acid substitution at/near a lysine residue that is a target of methylation. In the cases of H3K27M and H3K36M, found in pediatric DIPG (diffuse intrinsic pontine glioma) and chondroblastoma respectively, expression of the mutant histone leads to global reduction of histone methylation at the respective lysine residue. These mutant histones are termed "oncohistones" because their expression reprograms the epigenome and shapes an oncogenic transcriptome. Dissecting the mechanism of H3K27M-driven oncogenesis has led to the discovery of promising therapeutic targets in pediatric DIPG. The purpose of this review is to summarize the work done on identifying and dissecting the oncogenic properties of histone H3 mutations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA