Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cancer Educ ; 37(6): 1752-1759, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-33963443

RESUMEN

American Indians (AIs) in New Mexico have lower cancer screening rates compared to other populations and are more likely to be diagnosed with cancer at an advanced stage of the disease as reported by Li et al. (Archives of Internal Medicine 163(1):49-56, 2003). AIs also have the lowest 5-year cancer survival rates compared to any ethnic/racial group in the USA as reported by Clegg et al. (Arch Intern Med 162:1985-1993, 2002) and Edwards et al. (Cancer 97:1407-1427, 2005). Numerous barriers such as cultural beliefs, fear, fatalism, mistrust, stigma, and lack of culturally appropriate interventions could contribute to low cancer screening rates as reported by Daley et al. (J Health Dispar Res Pract 5(2), 2012); Filippi et al. (J Prim Care Community Health 4(3):160-166, 2013); James et al. (Prev Chronic Dis 10:E170, 2013); and Schumacher et al. (Cancer Causes Control 19(7):725-737, 2008). Trained Community Health Representatives (CHRs) from the Zuni Pueblo and native Zuni undergraduate students led six 1-h focus group sessions using a structured focus group guide with probes. The focus groups were conducted among 51 participants from different age groups (20-29 years, n = 19; 30-49 years, n = 17; and 50 years and older, n = 15) stratified by sex. Focus groups were conducted in both English and Shiwi (Zuni) languages. Sessions were audio recorded, and team members took notes. CHRs transcribed the notes and audio recordings, and created a codebook for qualitative data analysis. In the focus groups, participants provided Zuni-specific cultural context, opinion, and experience regarding (1) general knowledge about cancer, (2) cancer risk, (3) cancer risk reduction, (4) personal experiences with cancer, and (5) culturally competent delivery of cancer information and resources. Understanding the perceptions of cancer within the Zuni Pueblo is an essential component in the development of interventional/preventative measures and improvement of current care. Ultimately, this information will provide a basis for the next steps in culturally sensitive cancer care for the Zuni Pueblo.


Asunto(s)
Indígenas Norteamericanos , Neoplasias , Humanos , Adulto Joven , Adulto , Lenguaje , Neoplasias/diagnóstico , Neoplasias/prevención & control , Grupos Focales , Indio Americano o Nativo de Alaska
2.
BMC Cancer ; 21(1): 40, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413202

RESUMEN

BACKGROUND: Rho-family GTPases, including Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42), are important modulators of cancer-relevant cell functions and are viewed as promising therapeutic targets. Based on high-throughput screening and cheminformatics we identified the R-enantiomer of an FDA-approved drug (ketorolac) as an inhibitor of Rac1 and Cdc42. The corresponding S-enantiomer is a non-steroidal anti-inflammatory drug (NSAID) with selective activity against cyclooxygenases. We reported previously that R-ketorolac, but not the S-enantiomer, inhibited Rac1 and Cdc42-dependent downstream signaling, growth factor stimulated actin cytoskeleton rearrangements, cell adhesion, migration and invasion in ovarian cancer cell lines and patient-derived tumor cells. METHODS: In this study we treated mice with R-ketorolac and measured engraftment of tumor cells to the omentum, tumor burden, and target GTPase activity. In order to gain insights into the actions of R-ketorolac, we also performed global RNA-sequencing (RNA-seq) analysis on tumor samples. RESULTS: Treatment of mice with R-ketorolac decreased omental engraftment of ovarian tumor cells at 18 h post tumor cell injection and tumor burden after 2 weeks of tumor growth. R-ketorolac treatment inhibited tumor Rac1 and Cdc42 activity with little impact on mRNA or protein expression of these GTPase targets. RNA-seq analysis revealed that R-ketorolac decreased expression of genes in the HIF-1 signaling pathway. R-ketorolac treatment also reduced expression of additional genes associated with poor prognosis in ovarian cancer. CONCLUSION: These findings suggest that R-ketorolac may represent a novel therapeutic approach for ovarian cancer based on its pharmacologic activity as a Rac1 and Cdc42 inhibitor. R-ketorolac modulates relevant pathways and genes associated with disease progression and worse outcome.


Asunto(s)
Inhibidores de la Ciclooxigenasa/farmacología , Ketorolaco/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Animales , Apoptosis , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Desnudos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Estereoisomerismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas de Unión al GTP rho/metabolismo
3.
Am J Pathol ; 188(2): 515-524, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29169987

RESUMEN

Epidemiologic studies report improved breast cancer survival in women who receive ketorolac (Toradol) for postoperative pain relief compared with other analgesic agents. Ketorolac is a racemic drug. The S-enantiomer inhibits cyclooxygenases; R-ketorolac is a selective inhibitor of the small GTPases Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42), which are signaling molecules up-regulated during breast cancer progression and metastasis. The goal of this study was to determine whether R-ketorolac altered breast cancer development in the mouse mammary tumor virus-polyoma middle T-antigen model. Mice were administered ketorolac orally at 1 mg/kg twice daily to approximate the typical human dose. Mammary glands were analyzed for tumor number and immunohistochemical markers of proliferation and differentiation. R-ketorolac treatment significantly reduced mammary epithelial proliferation, based on Ki67 staining, and suppressed tumor development. Proliferative mammary epithelium from R-ketorolac-treated mice displayed greater differentiation, based on significantly higher total E-cadherin and decreased keratin 5 staining than epithelium of placebo-treated mice. No differences were detected in estrogen receptor, progesterone receptor, ß-catenin, or vimentin expression between placebo and R-ketorolac treatment groups. These findings indicate that R-ketorolac treatment slows tumor progression in an aggressive model of breast cancer. R-ketorolac may thus represent a novel therapeutic approach for breast cancer prevention or treatment based on its pharmacologic activity as a Rac1 and Cdc42 inhibitor.


Asunto(s)
Antineoplásicos/uso terapéutico , Ketorolaco Trometamina/uso terapéutico , Neoplasias Mamarias Animales/prevención & control , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Esquema de Medicación , Evaluación Preclínica de Medicamentos/métodos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Femenino , Ketorolaco Trometamina/administración & dosificación , Ketorolaco Trometamina/farmacología , Neoplasias Mamarias Animales/patología , Virus del Tumor Mamario del Ratón , Ratones Transgénicos , Poliomavirus
4.
Hum Genomics ; 10(1): 37, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27871310

RESUMEN

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) causes progressive loss of renal function in adults as a consequence of the accumulation of cysts. ADPKD is the most common genetic cause of end-stage renal disease. Mutations in polycystin-1 occur in 87% of cases of ADPKD and mutations in polycystin-2 are found in 12% of ADPKD patients. The complexity of ADPKD has hampered efforts to identify the mechanisms underlying its pathogenesis. No current FDA (Federal Drug Administration)-approved therapies ameliorate ADPKD progression. RESULTS: We used the de Almeida laboratory's sensitive new transcriptogram method for whole-genome gene expression data analysis to analyze microarray data from cell lines developed from cell isolates of normal kidney and of both non-cystic nephrons and cysts from the kidney of a patient with ADPKD. We compared results obtained using standard Ingenuity Volcano plot analysis, Gene Set Enrichment Analysis (GSEA) and transcriptogram analysis. Transcriptogram analysis confirmed the findings of Ingenuity, GSEA, and published analysis of ADPKD kidney data and also identified multiple new expression changes in KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways related to cell growth, cell death, genetic information processing, nucleotide metabolism, signal transduction, immune response, response to stimulus, cellular processes, ion homeostasis and transport and cofactors, vitamins, amino acids, energy, carbohydrates, drugs, lipids, and glycans. Transcriptogram analysis also provides significance metrics which allow us to prioritize further study of these pathways. CONCLUSIONS: Transcriptogram analysis identifies novel pathways altered in ADPKD, providing new avenues to identify both ADPKD's mechanisms of pathogenesis and pharmaceutical targets to ameliorate the progression of the disease.


Asunto(s)
Riñón Poliquístico Autosómico Dominante/metabolismo , Transcriptoma , Adulto , Estudios de Casos y Controles , Línea Celular , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , Masculino , Redes y Vías Metabólicas , Persona de Mediana Edad , Riñón Poliquístico Autosómico Dominante/patología , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
5.
J Cell Sci ; 126(Pt 23): 5313-6, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24293329

RESUMEN

A FASEB Summer Research Conference entitled 'Arf and Rab family G proteins' was held in July 2013 at Snowmass Village, Snowmass, Colorado. Arfs and Rabs are two families of GTPases that control membrane trafficking in eukaryotic cells, and increasing evidence indicates that their functions are tightly coordinated. Because many workers in this field have focused on only one family, this meeting was designed to integrate our understanding of the two families. The conference was organized by Elizabeth Sztul (University of Alabama, Birmingham, USA) and Jim Casanova (University of Virginia, Charlottesville, USA), and provided an opportunity for approximately 90 scientists to communicate their work and discuss future directions for the field. The talks highlighted the structural, functional and regulatory properties of Arf and Rab GTPases and the need to develop coordinated approaches to investigate them. Here, we present the major themes that emerged from the meeting.


Asunto(s)
Factores de Ribosilacion-ADP/genética , Proteínas de Unión al GTP rab/genética , Factores de Ribosilacion-ADP/química , Factores de Ribosilacion-ADP/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Transducción de Señal , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/metabolismo
6.
Traffic ; 13(12): 1565-88, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22901006

RESUMEN

Intracellular bacterial pathogens deploy virulence factors termed effectors to inhibit degradation by host cells and to establish intracellular niches where growth and differentiation take place. Here, we describe mechanisms by which human bacterial pathogens (including Chlamydiae; Coxiella burnetii; Helicobacter pylori; Legionella pneumophila; Listeria monocytogenes; Mycobacteria; Pseudomonas aeruginosa, Salmonella enterica) modulate endocytic and exocytic Rab GTPases in order to thrive in host cells. Host cell Rab GTPases are critical for intracellular transport following pathogen phagocytosis or endocytosis. At the molecular level bacterial effectors hijack Rab protein function to: evade degradation, direct transport to particular intracellular locations and monopolize host vesicles carrying molecules that are needed for a stable niche and/or bacterial growth and differentiation. Bacterial effectors may serve as specific receptors for Rab GTPases or as enzymes that post-translationally modify Rab proteins or endosomal membrane lipids required for Rab function. Emerging data indicate that bacterial effector expression is temporally and spatially regulated and multiple virulence factors may act concertedly to usurp Rab GTPase function, alter signaling and ensure niche establishment and intracellular bacterial growth, making this field an exciting area for further study.


Asunto(s)
Bacterias/patogenicidad , Interacciones Huésped-Patógeno , Proteínas de Unión al GTP rab/metabolismo , Animales , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Transporte de Proteínas , Factores de Virulencia/metabolismo
7.
J Biol Chem ; 288(2): 1135-49, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23188822

RESUMEN

Rab7 belongs to the Ras superfamily of small GTPases and is a master regulator of early to late endocytic membrane transport. Four missense mutations in the late endosomal Rab7 GTPase (L129F, K157N, N161T, and V162M) cause the autosomal dominant peripheral neuropathy Charcot-Marie-Tooth type 2B (CMT2B) disease. As yet, the pathological mechanisms connecting mutant Rab7 protein expression to altered neuronal function are undefined. Here, we analyze the effects of Rab7 CMT2B mutants on epidermal growth factor (EGF)-dependent intracellular signaling and trafficking. Three different cell lines expressing Rab7 CMT2B mutants and stimulated with EGF exhibited delayed trafficking of EGF to LAMP1-positive late endosomes and lysosomes and slowed EGF receptor (EGFR) degradation. Expression of all Rab7 CMT2B mutants altered the Rab7 activation cycle, leading to enhanced and prolonged EGFR signaling as well as variable increases in p38 and ERK1/2 activation. However, due to reduced nuclear translocation of p38 and ERK1/2, the downstream nuclear activation of Elk-1 was decreased along with the expression of immediate early genes like c-fos and Egr-1 by the disease mutants. In conclusion, our results demonstrate that Rab7 CMT2B mutants impair growth factor receptor trafficking and, in turn, alter p38 and ERK1/2 signaling from perinuclear, clustered signaling endosomes. The resulting down-regulation of EGFR-dependent nuclear transcription that is crucial for normal axon outgrowth and peripheral innervation offers a crucial new mechanistic insight into disease pathogenesis that is relevant to other neurodegenerative diseases.


Asunto(s)
Núcleo Celular/metabolismo , Endosomas/metabolismo , Receptores ErbB/metabolismo , Mutación Missense , Transducción de Señal , Proteínas de Unión al GTP rab/fisiología , Animales , Línea Celular , Enfermedad de Charcot-Marie-Tooth , Genes fos , Humanos , Laminopatías , Sistema de Señalización de MAP Quinasas , Microscopía Fluorescente , Mutagénesis , Transporte de Proteínas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7
8.
J Biol Chem ; 288(12): 8531-8543, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23382385

RESUMEN

Cdc42 plays important roles in cytoskeleton organization, cell cycle progression, signal transduction, and vesicle trafficking. Overactive Cdc42 has been implicated in the pathology of cancers, immune diseases, and neuronal disorders. Therefore, Cdc42 inhibitors would be useful in probing molecular pathways and could have therapeutic potential. Previous inhibitors have lacked selectivity and trended toward toxicity. We report here the characterization of a Cdc42-selective guanine nucleotide binding lead inhibitor that was identified by high throughput screening. A second active analog was identified via structure-activity relationship studies. The compounds demonstrated excellent selectivity with no inhibition toward Rho and Rac in the same GTPase family. Biochemical characterization showed that the compounds act as noncompetitive allosteric inhibitors. When tested in cellular assays, the lead compound inhibited Cdc42-related filopodia formation and cell migration. The lead compound was also used to clarify the involvement of Cdc42 in the Sin Nombre virus internalization and the signaling pathway of integrin VLA-4. Together, these data present the characterization of a novel Cdc42-selective allosteric inhibitor and a related analog, the use of which will facilitate drug development targeting Cdc42-related diseases and molecular pathway studies that involve GTPases.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Sondas Moleculares/farmacología , Pirazoles/farmacología , Sulfonamidas/farmacología , Proteína de Unión al GTP cdc42/antagonistas & inhibidores , Células 3T3 , Regulación Alostérica , Animales , Antivirales/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Humanos , Integrina alfa4beta1/antagonistas & inhibidores , Integrina alfa4beta1/fisiología , Ratones , Oligopéptidos/metabolismo , Compuestos de Fenilurea/metabolismo , Unión Proteica , Seudópodos/efectos de los fármacos , Virus Sin Nombre/fisiología , Relación Estructura-Actividad , Internalización del Virus/efectos de los fármacos , Proteína de Unión al GTP cdc42/química , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
9.
J Vis Exp ; (204)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38372326

RESUMEN

This protocol aims to establish a method for identifying small molecular antagonists of ß2 integrin activation, utilizing conformational-change-reporting antibodies and high-throughput flow cytometry. The method can also serve as a guide for other antibody-based high-throughput screening methods. ß2 integrins are leukocyte-specific adhesion molecules that are crucial in immune responses. Neutrophils rely on integrin activation to exit the bloodstream, not only to fight infections but also to be involved in multiple inflammatory diseases. Controlling ß2 integrin activation presents a viable approach for treating neutrophil-associated inflammatory diseases. In this protocol, a monoclonal antibody, mAb24, which specifically binds to the high-affinity headpiece of ß2 integrins, is utilized to quantify ß2 integrin activation on isolated primary human neutrophils. N-formylmethionyl-leucyl-phenylalanine (fMLP) is used as a stimulus to activate neutrophil ß2 integrins. A high-throughput flow cytometer capable of automatically running 384-well plate samples was used in this study. The effects of 320 chemicals on ß2 integrin inhibition are assessed within 3 h. Molecules that directly target ß2 integrins or target molecules in the G protein-coupled receptor-initiated integrin inside-out activation signaling pathway can be identified through this approach.


Asunto(s)
Antígenos CD18 , Moléculas de Adhesión Celular , Humanos , Antígenos CD18/química , Antígenos CD18/metabolismo , Adhesión Celular , Citometría de Flujo , Moléculas de Adhesión Celular/metabolismo , Neutrófilos/metabolismo
10.
Anal Biochem ; 442(2): 149-57, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23928044

RESUMEN

We describe a rapid assay for measuring the cellular activity of small guanine triphosphatases (GTPases) in response to a specific stimulus. Effector-functionalized beads are used to quantify in parallel multiple GTP-bound GTPases in the same cell lysate by flow cytometry. In a biologically relevant example, five different Ras family GTPases are shown for the first time to be involved in a concerted signaling cascade downstream of receptor ligation by Sin Nombre hantavirus.


Asunto(s)
Pruebas de Enzimas/métodos , Citometría de Flujo/métodos , GTP Fosfohidrolasas/metabolismo , Microesferas , Animales , Chlorocebus aethiops , Activación Enzimática , Células HeLa , Humanos , Análisis de la Célula Individual , Factores de Tiempo , Células Vero
11.
Cancer Res Commun ; 3(2): 309-324, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36860657

RESUMEN

The importance of the immune microenvironment in ovarian cancer progression, metastasis, and response to therapies has become increasingly clear, especially with the new emphasis on immunotherapies. To leverage the power of patient-derived xenograft (PDX) models within a humanized immune microenvironment, three ovarian cancer PDXs were grown in humanized NBSGW (huNBSGW) mice engrafted with human CD34+ cord blood-derived hematopoietic stem cells. Analysis of cytokine levels in the ascites fluid and identification of infiltrating immune cells in the tumors demonstrated that these humanized PDX (huPDX) established an immune tumor microenvironment similar to what has been reported for patients with ovarian cancer. The lack of human myeloid cell differentiation has been a major setback for humanized mouse models, but our analysis shows that PDX engraftment increases the human myeloid population in the peripheral blood. Analysis of cytokines within the ascites fluid of huPDX revealed high levels of human M-CSF, a key myeloid differentiation factor as well as other elevated cytokines that have previously been identified in ovarian cancer patient ascites fluid including those involved in immune cell differentiation and recruitment. Human tumor-associated macrophages and tumor-infiltrating lymphocytes were detected within the tumors of humanized mice, demonstrating immune cell recruitment to tumors. Comparison of the three huPDX revealed certain differences in cytokine signatures and in the extent of immune cell recruitment. Our studies show that huNBSGW PDX models reconstitute important aspects of the ovarian cancer immune tumor microenvironment, which may recommend these models for preclinical therapeutic trials. Significance: huPDX models are ideal preclinical models for testing novel therapies. They reflect the genetic heterogeneity of the patient population, enhance human myeloid differentiation, and recruit immune cells to the tumor microenvironment.


Asunto(s)
Neoplasias Ováricas , Cavidad Peritoneal , Humanos , Ratones , Animales , Femenino , Xenoinjertos , Ascitis , Neoplasias Ováricas/terapia , Citocinas , Microambiente Tumoral
12.
Biochim Biophys Acta ; 1812(10): 1344-57, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21255643

RESUMEN

Approximately 60,000 patients in the United States are waiting for a kidney transplant due to genetic, immunologic and environmentally caused kidney failure. Adult human renal stem cells could offer opportunities for autologous transplant and repair of damaged organs. Current data suggest that there are multiple progenitor types in the kidney with distinct localizations. In the present study, we characterize cells derived from human kidney papilla and show their capacity for tubulogenesis. In situ, nestin(+) and CD133/1(+) cells were found extensively intercalated between tubular epithelia in the loops of Henle of renal papilla, but not of the cortex. Populations of primary cells from the renal cortex and renal papilla were isolated by enzymatic digestion from human kidneys unsuited for transplant and immuno-enriched for CD133/1(+) cells. Isolated CD133/1(+) papillary cells were positive for nestin, as well as several human embryonic stem cell markers (SSEA4, Nanog, SOX2, and OCT4/POU5F1) and could be triggered to adopt tubular epithelial and neuronal-like phenotypes. Isolated papillary cells exhibited morphologic plasticity upon modulation of culture conditions and inhibition of asymmetric cell division. Labeled papillary cells readily associated with cortical tubular epithelia in co-culture and 3-dimensional collagen gel cultures. Heterologous organ culture demonstrated that CD133/1(+) progenitors from the papilla and cortex became integrated into developing kidney tubules. Tubular epithelia did not participate in tubulogenesis. Human renal papilla harbor cells with the hallmarks of adult kidney stem/progenitor cells that can be amplified and phenotypically modulated in culture while retaining the capacity to form new kidney tubules. This article is part of a Special Issue entitled: Polycystic Kidney Disease.


Asunto(s)
Células Madre Adultas/citología , Células Madre Adultas/inmunología , Antígenos CD/metabolismo , Glicoproteínas/metabolismo , Médula Renal/citología , Túbulos Renales/citología , Túbulos Renales/crecimiento & desarrollo , Péptidos/metabolismo , Antígeno AC133 , Células Madre Adultas/trasplante , Animales , Diferenciación Celular , Separación Celular , Técnicas de Cocultivo , Ensayo de Unidades Formadoras de Colonias , Humanos , Ratones , Técnicas de Cultivo de Órganos , Riñón Poliquístico Autosómico Dominante/terapia
13.
Biochim Biophys Acta ; 1812(10): 1225-38, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21126580

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutation of PKD1 and PKD2 that encode polycystin-1 and polycystin-2. Polycystin-1 is tyrosine phosphorylated and modulates multiple signaling pathways including AP-1, and the identity of the phosphatases regulating polycystin-1 are previously uncharacterized. Here we identify members of the LAR protein tyrosine phosphatase (RPTP) superfamily as members of the polycystin-1complex mediated through extra- and intracellular interactions. The first extracellular PKD1 domain of polycystin-1 interacts with the first Ig domain of RPTPσ, while the polycystin-1 C-terminus of polycystin-1 interacts with the regulatory D2 phosphatase domain of RPTPγ. Additional homo- and heterotypic interactions between RPTPs recruit RPTPδ. The multimeric polycystin protein complex is found localised in cilia. RPTPσ and RPTPδ are also part of a polycystin-1/E-cadherin complex known to be important for early events in adherens junction stabilisation. The interaction between polycystin-1 and RPTPγ is disrupted in ADPKD cells, while RPTPσ and RPTPδ remain closely associated with E-cadherin, largely in an intracellular location. The polycystin-1 C-terminus is an in vitro substrate of RPTPγ, which dephosphorylates the c-Src phosphorylated Y4237 residue and activates AP1-mediated transcription. The data identify RPTPs as novel interacting partners of the polycystins both in cilia and at adhesion complexes and demonstrate RPTPγ phosphatase activity is central to the molecular mechanisms governing polycystin-dependent signaling. This article is part of a Special Issue entitled: Polycystic Kidney Disease.


Asunto(s)
Proteínas Tirosina Fosfatasas Similares a Receptores/química , Canales Catiónicos TRPP/química , Secuencia de Aminoácidos , Animales , Cadherinas/química , Cadherinas/metabolismo , Línea Celular , Membrana Celular/química , Humanos , Técnicas In Vitro , Riñón/metabolismo , Ratones , Modelos Moleculares , Complejos Multiproteicos/química , Mutagénesis Sitio-Dirigida , Biblioteca de Péptidos , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Tirosina Fosfatasas Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Similares a Receptores/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/química , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/química , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Factor de Transcripción AP-1/metabolismo
14.
Cult Stud Sci Educ ; 17(2): 557-588, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35126768

RESUMEN

Native Americans are the least represented population in science fields. In recent years, undergraduate and graduate level summer research programs that aimed to increase the number of Native Americans in science have made some progress. As new programs are designed, key characteristics that address science self-efficacy and science identity and provide supports for Native American students' commitment to a scientific career should be considered. In this study, we used sequential mixed methods to investigate the potential of culturally tailored internship programs on Native American persistence in science. We analyzed surveys (n = 47) and interviews (n = 4) with Native American students to understand their perceptions of themselves in relation to science research and how summer research experiences might develop science identities. Based on regression modeling, science identity, but not science self-efficacy, predicted intent to persist in science. In turn, science self-efficacy and Native American identity predicted science identity, and this suggests cultural identity is central to Native American persistence in science. In interviews, students' comments reinforced these findings and shed light on students' reasoning about the kinds of science experiences they sought; specifically, they chose to participate in culturally tailored internships because these programs provided a sense of belonging to the scientific community that did not conflict with their cultural identities. Based on our analysis, we propose an Indigenous science internship model and recommend that agencies target funding for culturally tailored programs from high school through early-investigator levels as well as provide inclusive programmatic and mentoring guidelines.

15.
Mol Biol Cell ; 33(14): ar138, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36200848

RESUMEN

Experimental and computational studies pinpoint rate-limiting step(s) in metastasis governed by Rac1. Using ovarian cancer cell and animal models, Rac1 expression was manipulated, and quantitative measurements of cell-cell and cell-substrate adhesion, cell invasion, mesothelial clearance, and peritoneal tumor growth discriminated the tumor behaviors most highly influenced by Rac1. The experimental data were used to parameterize an agent-based computational model simulating peritoneal niche colonization, intravasation, and hematogenous metastasis to distant organs. Increased ovarian cancer cell survival afforded by the more rapid adhesion and intravasation upon Rac1 overexpression is predicted to increase the numbers of and the rates at which tumor cells are disseminated to distant sites. Surprisingly, crowding of cancer cells along the blood vessel was found to decrease the numbers of cells reaching a distant niche irrespective of Rac1 overexpression or knockdown, suggesting that sites for tumor cell intravasation are rate limiting and become accessible if cells intravasate rapidly or are displaced due to diminished viability. Modeling predictions were confirmed through animal studies of Rac1-dependent metastasis to the lung. Collectively, the experimental and modeling approaches identify cell adhesion, rapid intravasation, and survival in the blood as parameters in the ovarian metastatic cascade that are most critically dependent on Rac1.


Asunto(s)
Neoplasias Ováricas , Humanos , Animales , Femenino , Línea Celular Tumoral , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Adhesión Celular , Pulmón/metabolismo , Análisis de Sistemas , Proteína de Unión al GTP rac1/metabolismo , Metástasis de la Neoplasia/patología , Movimiento Celular
16.
Am J Physiol Cell Physiol ; 301(1): C99-C105, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21389276

RESUMEN

While a variety of genetic mutations have been shown to be associated with renal cyst formation, mechanisms of renal cyst formation are largely unknown. In prior communications we described alterations in E-cadherin assembly in cultured cystic epithelial cells (Charron AJ, Nakamura S, Bacallao R, Wandinger-Ness A. J Cell Biol 149: 111-124, 2000). Using the same cell line we assayed cadherin expression by RT-PCR using primer pairs that anneal to highly conserved sequences of cadherin genes but flank informative regions of cadherins. Using this approach we found that autosomal dominant polycystic kidney disease (ADPKD) cells express cadherin 8, a neuronal cadherin with limited expression in the kidney. Immunohistochemistry confirmed cadherin 8 expression in cystic epithelia. To test the functional significance of cadherin 8 expression in renal epithelial cells, we adapted a three-dimensional collagen culture method in which HK-2 cells form tubule structures and microinjected adenovirus into the matrix space surrounding tubule structures. Adenovirus expressing cadherin 8 under the control of a tet promoter caused cyst structures to grow out of the tubules when coinjected with adenovirus expressing a tet transactivator. Microinjection of single adenovirus expressing either tet transactivator or cadherin 8 failed to cause cyst formation. When doxycycline was added to the culture, following coinjection of adenovirus, there was a dose-response reduction in cadherin 8 expression and cyst formation. Similarly, HK-2 cells transfected with Flag-tagged cadherin 8 form cysts in addition to tubular structures. HK-2 cells transfected with Flag-tagged N-cadherin do not form cysts. These data suggest that ectopic expression of cadherin 8 in renal epithelial cells is sufficient to cause the morphogenic pattern of cyst formation.


Asunto(s)
Cadherinas/biosíntesis , Cadherinas/genética , Túbulos Renales/metabolismo , Riñón Poliquístico Autosómico Dominante/patología , Adenoviridae/genética , Antibacterianos/farmacología , Cadherinas/efectos de los fármacos , Células Cultivadas , Colágeno/genética , Colágeno/metabolismo , ADN Polimerasa Dirigida por ADN , Doxiciclina/farmacología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Humanos , Mutación , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Transactivadores/genética
17.
Drug Discov Today Ther Strateg ; 8(3-4): 61-69, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22368688

RESUMEN

Academia and small business research units are poised to play an increasing role in drug discovery, with drug repurposing as one of the major areas of activity. Here we summarize project status for a number of drugs or classes of drugs: raltegravir, cyclobenzaprine, benzbromarone, mometasone furoate, astemizole, R-naproxen, ketorolac, tolfenamic acid, phenothiazines, methylergonovine maleate and beta-adrenergic receptor drugs, respectively. Based on this multi-year, multi-project experience we discuss strengths and weaknesses of academic-based drug repurposing research. Translational, target and disease foci are strategic advantages fostered by close proximity and frequent interactions between basic and clinical scientists, which often result in discovering new modes of action for approved drugs. On the other hand, lack of integration with pharmaceutical sciences and toxicology, lack of appropriate intellectual coverage and issues related to dosing and safety may lead to significant drawbacks. The development of a more streamlined regulatory process world-wide, and the development of pre-competitive knowledge transfer systems such as a global healthcare database focused on regulatory and scientific information for drugs world-wide, are among the ideas proposed to improve the process of academic drug discovery and repurposing, and to overcome the "valley of death" by bridging basic to clinical sciences.

18.
J Virol ; 82(19): 9505-12, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18667513

RESUMEN

High-risk human papillomaviruses (HPVs) are small nonenveloped DNA viruses with a strict tropism for squamous epithelium. The viruses are causative agents of cervical cancer and some head and neck cancers, but their differentiation-dependent life cycles have made them difficult to study in simple cell culture. Thus, many aspects of early HPV infection remain mysterious. We recently showed the high-risk HPV type 31 (HPV31) enters its natural host cell type via caveola-dependent endocytosis, a distinct mechanism from that of the closely related HPV16 (Smith et al., J. Virol. 81:9922-9931, 2007). Here, we determined the downstream trafficking events after caveolar entry of HPV31 into human keratinocytes. After initial plasma membrane binding, HPV31 associates with caveolin-1 and transiently localizes to the caveosome before trafficking to the early endosome and proceeding through the endosomal pathway. Caveosome-to-endosome transport was found to be Rab5 GTPase dependent. Although HPV31 capsids were observed in the lysosome, Rab7 GTPase was dispensable for HPV31 infection, suggesting that viral genomes escape from the endosomal pathway prior to Rab7-mediated capsid transport. Consistent with this, the acidic pH encountered by HPV31 within the early endosomal pathway induces a conformational change in the capsid resulting in increased DNase susceptibility of the viral genome, which likely aids in uncoating and/or endosomal escape. The entry and trafficking route of HPV31 into human keratinocytes represents a unique viral pathway by which the virions use caveolar entry to eventually access a low-pH site that appears to facilitate endosomal escape of genomes.


Asunto(s)
Caveolina 1/metabolismo , Queratinocitos/metabolismo , Queratinocitos/virología , Proteínas de Unión al GTP rab/metabolismo , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Endocitosis , Endosomas/metabolismo , Endosomas/virología , Genoma , Genoma Viral , Humanos , Concentración de Iones de Hidrógeno , Modelos Biológicos , Conformación Molecular , Proteínas de Unión al GTP rab5/metabolismo , Proteínas de Unión a GTP rab7
19.
Trends Cell Biol ; 12(8): 374-81, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12191914

RESUMEN

Establishment and maintenance of a polarized epithelium relies on the integration of signaling cascades, acquisition of specialized trafficking circuits and establishment of a unique cytoarchitecture. Defects in any of these processes can adversely affect cell polarity and cause defects in specific organs and systemic disease. Mutations that disrupt the proper transport of individual plasma membrane proteins, or inactivate components of the epithelial-specific trafficking machinery, have severe functional consequences. Links between renal diseases and defects in trafficking, differentiation or signaling, highlight the delicate balance between these parameters which, when altered, precipitates a loss of renal function.


Asunto(s)
Transporte Biológico , Células Epiteliales/metabolismo , Enfermedades Genéticas Congénitas/metabolismo , Actinas/metabolismo , Animales , Polaridad Celular , Endocitosis/fisiología , Células Epiteliales/fisiología , Regulación de la Expresión Génica , Enfermedades Genéticas Congénitas/genética , Humanos , Ratones , Modelos Biológicos , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Recesivo/metabolismo , Transducción de Señal
20.
Cancers (Basel) ; 11(8)2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31344967

RESUMEN

Cytoreductive surgery and chemotherapy are cornerstones of ovarian cancer treatment, yet disease recurrence remains a significant clinical issue. Surgery can release cancer cells into the circulation, suppress anti-tumor immunity, and induce inflammatory responses that support the growth of residual disease. Intervention within the peri-operative window is an under-explored opportunity to mitigate these consequences of surgery and influence the course of metastatic disease to improve patient outcomes. One drug associated with improved survival in cancer patients is ketorolac. Ketorolac is a chiral molecule administered as a 1:1 racemic mixture of the S- and R-enantiomers. The S-enantiomer is considered the active component for its FDA indication in pain management with selective activity against cyclooxygenase (COX) enzymes. The R-enantiomer has a previously unrecognized activity as an inhibitor of Rac1 (Ras-related C3 botulinum toxin substrate) and Cdc42 (cell division control protein 42) GTPases. Therefore, ketorolac differs from other non-steroidal anti-inflammatory drugs (NSAIDs) by functioning as two distinct pharmacologic entities due to the independent actions of each enantiomer. In this review, we summarize evidence supporting the benefits of ketorolac administration for ovarian cancer patients. We also discuss how simultaneous inhibition of these two distinct classes of targets, COX enzymes and Rac1/Cdc42, by S-ketorolac and R-ketorolac respectively, could each contribute to anti-cancer activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA