Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 9, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163908

RESUMEN

BACKGROUND: Essential micronutrient Boron (B) plays crucial roles in plant survival and reproduction but becomes toxic in higher quantities. Although plant cells have different B transport systems, B homeostasis is mainly maintained by two transporter protein families: B exporters (BOR) and nodulin-26-like intrinsic proteins (NIP). Their diversity and differential expression are responsible for varied B tolerance among plant varieties and species. Longan is a highly admired subtropical fruit with a rising market in China and beyond. In the present study, we cultured Shixia (SX) and Yiduo (YD), two differently characterized Longan cultivars, with foliar B spray. We analyzed their leaf physiology, fruit setting, B content, and boron transporter gene expression of various tissue samples. We also traced some of these genes' subcellular localization and overexpression effects. RESULTS: YD and SX foliage share similar microstructures, except the mesophyll cell wall thickness is double in YD. The B spray differently influenced their cellular constituents and growth regulators. Gene expression analysis showed reduced BOR genes expression and NIP genes differential spatiotemporal expression. Using green fluorescent protein, two high-expressing NIPs, NIP1 and NIP19, were found to translocate in the transformed tobacco leaves' cell membrane. NIPs transformation of SX pollen was confirmed using magnetic beads and quantified using a fluorescence microscope and polymerase chain reaction. An increased seed-setting rate was observed when YD was pollinated using these pollens. Between the DlNIP1 and DlNIP19 transformed SX pollen, the former germinated better with increasing B concentrations and, compared to naturally pollinated plants, had a better seed-setting rate in YD♀ × SX♂. CONCLUSION: SX and YD Longan have different cell wall structures and react differently to foliar B spray, indicating distinct B tolerance and management. Two B transporter NIP genes were traced to localize in the plasma membrane. However, under high B concentrations, their differential expression resulted in differences in Jasmonic acid content, leading to differences in germination rate. Pollination of YD using these NIPs transformed SX pollen also showed NIP1 overexpression might overcome the unilateral cross incompatibility between YD♀ × SX♂ and can be used to increase Longan production.


Asunto(s)
Boro , Proteínas de Transporte de Membrana , Boro/metabolismo , Transporte Biológico , Proteínas de Transporte de Membrana/genética , Plantas/metabolismo , Proteínas Portadoras/metabolismo , Homeostasis
2.
Phys Chem Chem Phys ; 26(5): 4597-4606, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38250817

RESUMEN

We proposed a triple-band narrowband device based on a metal-insulator-metal (MIM) structure in visible and near-infrared regions. The finite difference time domain (FDTD) simulated results illustrated that the absorber possessed three perfect absorption peaks under TM polarization, and the absorption efficiencies were about 99.76%, 99.99%, and 99.92% at 785 nm, 975 nm, and 1132 nm, respectively. Simulation results matched well with the results of coupled-mode theory (CMT). Analyses of the distributions of the electric field indicated the "perfect" absorption was due to localized surface plasmon polaritons resonance (LSPPR) and Fabry-Perot resonance. We developed a multi-band absorber with more ellipsoid pillars. The four band-absorbing device presented perfect absorption at 767 nm, 1046 nm, 1122 nm, and 1303 nm, and the absorption rates were 99.45%, 99.41%, 99.99%, and 99.94%, respectively. By changing the refractive index of the surrounding medium, the resonant wavelengths could be tuned linearly. The maximum sensitivity and Figure of Merit were 230 nm RIU-1 and 10.84 RIU-1, respectively. The elliptical structural design provides more tuning degrees of freedom. The absorber possessed several satisfactory performances: excellent absorption behavior, multiple bands, tunability, incident insensitivity, and simple structure. Therefore, the designed absorbing device has enormous potential in optoelectronic detection, optical switching, and imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA