Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 23(4): 535-542, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38308087

RESUMEN

Oxides with a face-centred cubic (fcc) anion sublattice are generally not considered as solid-state electrolytes as the structural framework is thought to be unfavourable for lithium (Li) superionic conduction. Here we demonstrate Li superionic conductivity in fcc-type oxides in which face-sharing Li configurations have been created through cation over-stoichiometry in rocksalt-type lattices via excess Li. We find that the face-sharing Li configurations create a novel spinel with unconventional stoichiometry and raise the energy of Li, thereby promoting fast Li-ion conduction. The over-stoichiometric Li-In-Sn-O compound exhibits a total Li superionic conductivity of 3.38 × 10-4 S cm-1 at room temperature with a low migration barrier of 255 meV. Our work unlocks the potential of designing Li superionic conductors in a prototypical structural framework with vast chemical flexibility, providing fertile ground for discovering new solid-state electrolytes.

2.
Small ; 20(10): e2306807, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37880877

RESUMEN

Spinel-structured LiNix Mn2-x O4 (LNMO), with low-cost earth-abundant constituents, is a promising high-voltage cathode material for lithium-ion batteries. Even though extensive electrochemical investigations have been conducted on these materials, few studies have explored correlations between their loss in performance and associated changes in microstructure. Here, down to the atomic scale, the structural evolution of these materials is investigated upon the progressive cycling of lithium-ion cells. Transgranular cracking is revealed to be a key feature during cycling; this cracking is initiated at the particle surface and leads to the penetration of electrolytes along the crack path, thereby increasing particle exposure to the electrolyte. The lattice structure on the crack surface shows spatial variances, featuring a top layer of rock-salt, a sublayer of a Mn3 O4 -like arrangement, and then a mixed-cation region adjacent to the bulk lattice. The transgranular cracking, along with the emergence of local lattice distortion, becomes more evident with extended cycling. Further, phase transformation at primary particle surfaces and void formation through vacancy condensation is found in the cycled samples. All these features collectively contribute to the performance degradation of the battery cells during electrochemical cycling.

3.
Small ; : e2402256, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38794863

RESUMEN

Sodium (Na)-metal batteries (SMBs) are considered one of the most promising candidates for the large-scale energy storage market owing to their high theoretical capacity (1,166 mAh g-1) and the abundance of Na raw material. However, the limited stability of electrolytes still hindered the application of SMBs. Herein, sulfolane (Sul) and vinylene carbonate (VC) are identified as effective dual additives that can largely stabilize propylene carbonate (PC)-based electrolytes, prevent dendrite growth, and extend the cycle life of SMBs. The cycling stability of the Na/NaNi0.68Mn0.22Co0.1O2 (NaNMC) cell with this dual-additive electrolyte is remarkably enhanced, with a capacity retention of 94% and a Coulombic efficiency (CE) of 99.9% over 600 cycles at a 5 C (750 mA g-1) rate. The superior cycling performance of the cells can be attributed to the homogenous, dense, and thin hybrid solid electrolyte interphase consisting of F- and S-containing species on the surface of both the Na metal anode and the NaNMC cathode by adding dual additives. Such unique interphases can effectively facilitate Na-ion transport kinetics and avoid electrolyte depletion during repeated cycling at a very high rate of 5 C. This electrolyte design is believed to result in further improvements in the performance of SMBs.

4.
Proc Natl Acad Sci U S A ; 118(9)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33632763

RESUMEN

Electrolyte is very critical to the performance of the high-voltage lithium (Li) metal battery (LMB), which is one of the most attractive candidates for the next-generation high-density energy-storage systems. Electrolyte formulation and structure determine the physical properties of the electrolytes and their interfacial chemistries on the electrode surfaces. Localized high-concentration electrolytes (LHCEs) outperform state-of-the-art carbonate electrolytes in many aspects in LMBs due to their unique solvation structures. Types of fluorinated cosolvents used in LHCEs are investigated here in searching for the most suitable diluent for high-concentration electrolytes (HCEs). Nonsolvating solvents (including fluorinated ethers, fluorinated borate, and fluorinated orthoformate) added in HCEs enable the formation of LHCEs with high-concentration solvation structures. However, low-solvating fluorinated carbonate will coordinate with Li+ ions and form a second solvation shell or a pseudo-LHCE which diminishes the benefits of LHCE. In addition, it is evident that the diluent has significant influence on the electrode/electrolyte interphases (EEIs) beyond retaining the high-concentration solvation structures. Diluent molecules surrounding the high-concentration clusters could accelerate or decelerate the anion decomposition through coparticipation of diluent decomposition in the EEI formation. The varied interphase features lead to significantly different battery performance. This study points out the importance of diluents and their synergetic effects with the conductive salt and the solvating solvent in designing LHCEs. These systematic comparisons and fundamental insights into LHCEs using different types of fluorinated solvents can guide further development of advanced electrolytes for high-voltage LMBs.

5.
Nano Lett ; 23(18): 8385-8391, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37703459

RESUMEN

We use in situ liquid secondary ion mass spectroscopy, cryogenic transmission electron microscopy, and density functional theory calculation to delineate the molecular process in the formation of the solid-electrolyte interphase (SEI) layer under the dynamic operating conditions. We discover that the onset potential for SEI layer formation and the thickness of the SEI show dependence on the solvation shell structure. On a Cu film anode, the SEI is noticed to start to form at around 2.0 V (nominal cell voltage) with a final thickness of about 40-50 nm in the 1.0 M LiPF6/EC-DMC electrolyte, while for the case of 1.0 M LiFSI/DME, the SEI starts to form at around 1.5 V with a final thickness of about 20 nm. Our observations clearly indicate the inner and outer SEI layer formation and dissipation upon charging and discharging, implying a continued evolution of electrolyte structure with extended cycling.

6.
Nano Lett ; 23(15): 6839-6844, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37463412

RESUMEN

Longevity of Li ion batteries strongly depends on the interaction of transporting Li ions in electrode crystals with defects. However, detailed interactions between the Li ion flux and structural defects in the host crystal remain obscure due to the transient nature of such interactions. Here, by in situ transmission electron microscopy and density function theory calculations, we reveal how the diffusion pathways and transport kinetics of a Li ion can be affected by planar defects in a tungsten trioxide lattice. We uncover that changes in charge distribution and lattice spacing along the planar defects disrupt the continuity of ion conduction channels and dramatically increase the energy barrier of Li diffusion, thus, arresting Li ions at the defect sites and twisting the lithiation front. The atomic-scale understanding holds critical implications for rational interface design in solid-state batteries and solid oxide fuel cells.

7.
Nat Mater ; 21(2): 173-180, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34621059

RESUMEN

The field of nanotribology has long suffered from the inability to directly observe what takes place at a sliding interface. Although techniques based on atomic force microscopy have identified many friction phenomena at the nanoscale, many interpretative pitfalls still result from the indirect or ex situ characterization of contacting surfaces. Here we combined in situ high-resolution transmission electron microscopy and atomic force microscopy measurements to provide direct real-time observations of atomic-scale interfacial structure during frictional processes and discovered the formation of a loosely packed interfacial layer between two metallic asperities that enabled a low friction under tensile stress. This finding is corroborated by molecular dynamic simulations. The loosely packed interfacial layer became an ordered layer at equilibrium distances under compressive stress, which led to a transition from a low-friction to a dissipative high-friction motion. This work directly unveils a unique role of atomic diffusion in the friction of metallic contacts.

8.
Proc Natl Acad Sci U S A ; 117(46): 28603-28613, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33144505

RESUMEN

Functional electrolyte is the key to stabilize the highly reductive lithium (Li) metal anode and the high-voltage cathode for long-life, high-energy-density rechargeable Li metal batteries (LMBs). However, fundamental mechanisms on the interactions between reactive electrodes and electrolytes are still not well understood. Recently localized high-concentration electrolytes (LHCEs) are emerging as a promising electrolyte design strategy for LMBs. Here, we use LHCEs as an ideal platform to investigate the fundamental correlation between the reactive characteristics of the inner solvation sheath on electrode surfaces due to their unique solvation structures. The effects of a series of LHCEs with model electrolyte solvents (carbonate, sulfone, phosphate, and ether) on the stability of high-voltage LMBs are systematically studied. The stabilities of electrodes in different LHCEs indicate the intrinsic synergistic effects between the salt and the solvent when they coexist on electrode surfaces. Experimental and theoretical analyses reveal an intriguing general rule that the strong interactions between the salt and the solvent in the inner solvation sheath promote their intermolecular proton/charge transfer reactions, which dictates the properties of the electrode/electrolyte interphases and thus the battery performances.

9.
Angew Chem Int Ed Engl ; 62(17): e202218005, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36859655

RESUMEN

Localized high-concentration electrolytes (LHCEs) based on five different types of solvents were systematically studied and compared in lithium (Li)-ion batteries (LIBs). The unique solvation structure of LHCEs promotes the participation of Li salt in forming solid electrolyte interphase (SEI) on graphite (Gr) anode, which enables solvents previously considered incompatible with Gr to achieve reversible lithiation/delithiation. However, the long cyclability of LIBs is still subject to the intrinsic properties of the solvent species in LHCEs. Such issue can be readily resolved by introducing a small amount of additive into LHCEs. The synergetic decompositions of Li salt, solvating solvent and additive yield effective SEIs and cathode electrolyte interphases (CEIs) in most of the studied LHCEs. This study reveals that both the structure and the composition of solvation sheaths in LHCEs have significant effect on SEI and CEI, and consequently, the cycle life of energetically dense LIBs.

10.
J Am Chem Soc ; 144(13): 5795-5811, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35325534

RESUMEN

In the pursuit of urgently needed, energy dense solid-state batteries for electric vehicle and portable electronics applications, halide solid electrolytes offer a promising path forward with exceptional compatibility against high-voltage oxide electrodes, tunable ionic conductivities, and facile processing. For this family of compounds, synthesis protocols strongly affect cation site disorder and modulate Li+ mobility. In this work, we reveal the presence of a high concentration of stacking faults in the superionic conductor Li3YCl6 and demonstrate a method of controlling its Li+ conductivity by tuning the defect concentration with synthesis and heat treatments at select temperatures. Leveraging complementary insights from variable temperature synchrotron X-ray diffraction, neutron diffraction, cryogenic transmission electron microscopy, solid-state nuclear magnetic resonance, density functional theory, and electrochemical impedance spectroscopy, we identify the nature of planar defects and the role of nonstoichiometry in lowering Li+ migration barriers and increasing Li site connectivity in mechanochemically synthesized Li3YCl6. We harness paramagnetic relaxation enhancement to enable 89Y solid-state NMR and directly contrast the Y cation site disorder resulting from different preparation methods, demonstrating a potent tool for other researchers studying Y-containing compositions. With heat treatments at temperatures as low as 333 K (60 °C), we decrease the concentration of planar defects, demonstrating a simple method for tuning the Li+ conductivity. Findings from this work are expected to be generalizable to other halide solid electrolyte candidates and provide an improved understanding of defect-enabled Li+ conduction in this class of Li-ion conductors.

11.
BMC Plant Biol ; 22(1): 438, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36096752

RESUMEN

BACKGROUND: Proanthocyanidins (PAs) have always been considered as important medicinal value component. In order to gain insights into the PA biosynthesis regulatory network in I. stachyodes roots, we analyzed the transcriptome of the I. stachyodes in Leaf, Stem, RootI (one-year-old root), and RootII (two-year-old root). RESULTS: In this study, a total of 110,779 non-redundant unigenes were obtained, of which 63,863 could be functionally annotated. Simultaneously, 75 structural genes that regulate PA biosynthesis were identified, of these 6 structural genes (IsF3'H1, IsANR2, IsLAR2, IsUGT72L1-3, IsMATE2, IsMATE3) may play an important role in the synthesis of PAs in I. stachyodes roots. Furthermore, co-expression network analysis revealed that 34 IsMYBs, 18 IsbHLHs, 15 IsWRKYs, 9 IsMADSs, and 3 IsWIPs hub TFs are potential regulators for PA accumulation. Among them, IsMYB24 and IsMYB79 may be closely involved in the PA biosynthesis in I. stachyodes roots. CONCLUSIONS: The biosynthesis of PAs in I. stachyodes roots is mainly produced by the subsequent pathway of cyanidin. Our work provides new insights into the molecular pathways underlying PA accumulation and enhances our global understanding of transcriptome dynamics throughout different tissues.


Asunto(s)
Indigofera , Proantocianidinas , Regulación de la Expresión Génica de las Plantas , Indigofera/metabolismo , Proteínas de Plantas/metabolismo , Proantocianidinas/metabolismo , Factores de Transcripción/metabolismo
12.
Small ; 18(14): e2107357, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35182015

RESUMEN

Lithium-ion batteries based on single-crystal LiNi1- x - y Cox Mny O2 (NCM, 1-x-y ≥ 0.6) cathode materials are gaining increasing attention due to their improved structural stability resulting in superior cycle life compared to batteries based on polycrystalline NCM. However, an in-depth understanding of the less pronounced degradation mechanism of single-crystal NCM is still lacking. Here, a detailed postmortem study is presented, comparing pouch cells with single-crystal versus polycrystalline LiNi0.60 Co0.20 Mn0.20 O2 (NCM622) cathodes after 1375 dis-/charge cycles against graphite anodes. The thickness of the cation-disordered layer forming in the near-surface region of the cathode particles does not differ significantly between single-crystal and polycrystalline particles, while cracking is pronounced for polycrystalline particles, but practically absent for single-crystal particles. Transition metal dissolution as quantified by time-of-flight mass spectrometry on the surface of the cycled graphite anode is much reduced for single-crystal NCM622. Similarly, CO2 gas evolution during the first two cycles as quantified by electrochemical mass spectrometry is much reduced for single-crystal NCM622. Benefitting from these advantages, graphite/single-crystal NMC622 pouch cells are demonstrated with a cathode areal capacity of 6 mAh cm-2 with an excellent capacity retention of 83% after 3000 cycles to 4.2 V, emphasizing the potential of single-crystalline NCM622 as cathode material for next-generation lithium-ion batteries.

13.
Proc Natl Acad Sci U S A ; 115(30): 7700-7705, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29987052

RESUMEN

Gold (Au) catalysts exhibit a significant size effect, but its origin has been puzzling for a long time. It is generally believed that supported Au clusters are more or less rigid in working condition, which inevitably leads to the general speculation that the active sites are immobile. Here, by using atomic resolution in situ environmental transmission electron microscopy, we report size-dependent structure dynamics of single Au nanoparticles on ceria (CeO2) in CO oxidation reaction condition at room temperature. While large Au nanoparticles remain rigid in the catalytic working condition, ultrasmall Au clusters lose their intrinsic structures and become disordered, featuring vigorous structural rearrangements and formation of dynamic low-coordinated atoms on surface. Ab initio molecular-dynamics simulations reveal that the interaction between ultrasmall Au cluster and CO molecules leads to the dynamic structural responses, demonstrating that the shape of the catalytic particle under the working condition may totally differ from the shape under the static condition. The present observation provides insight on the origin of superior catalytic properties of ultrasmall gold clusters.

14.
Nano Lett ; 20(1): 418-425, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31816244

RESUMEN

Batteries using lithium (Li) metal as the anode are considered promising energy storage systems because of their high specific energy densities. The crucial bottlenecks for Li metal anode are Li dendrites growth and side reactions with electrolyte inducing safety concern, low Coulombic efficiency (CE), and short cycle life. Vinylene carbonate (VC), as an effective electrolyte additive in Li-ion batteries, has been noticed to significantly enhance the CE, whereas the origin of such an additive remains unclear. Here we use cryogenic transmission electron microscopy imaging combing with energy dispersive X-ray spectroscopy elemental and electron energy loss spectroscopy electronic structure analyses to reveal the role of the VC additive. We discovered that the electrochemically deposited Li metal (EDLi) in the VC-containing electrolyte is slightly oxidized with the solid electrolyte interphase (SEI) being a nanoscale mosaic-like structure comprised of organic species, Li2O and Li2CO3, whereas the EDLi formed in the VC-free electrolyte is featured by a combination of fully oxidized Li with Li2O SEI layer and pure Li metal with multilayer nanostructured SEI. These results highlight the possible tuning of crucial structural and chemical features of EDLi and SEI through additives and consequently direct correlation with electrochemical performance, providing valuable guidelines to rational selection, design, and synthesis of additives for new battery chemistries.

15.
Nano Lett ; 20(4): 2756-2762, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32119550

RESUMEN

Structural transformations near surfaces of solid-state materials underpin functional mechanisms of a broad range of applications including catalysis, memory, and energy storage. It has been a long-standing notion that the outermost free surfaces, accompanied by broken translational symmetry and altered atomic configurations, are usually the birthplace for structural transformations. Here, in a layered oxide cathode for Li-ion batteries, we for the first time observe the incipient state of the well-documented layered-to-spinel-like structural transformation, which is surprisingly initiated from the subsurface layer, rather than the very surface. Coupling atomic level scanning transmission electron microscopy imaging with electron energy loss spectroscopy, we discover that the reconstructed subsurfaces, featuring a mix of discrete patches of layered and spinel-like structures, are associated with selective atomic species partition and consequent nanoscale nonuniform composition gradient distribution at the subsurface. Our findings provide fundamental insights on atomic-scale mechanisms of structural transformation in layered cathodes.

16.
Nano Lett ; 20(10): 7455-7462, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33017539

RESUMEN

Nanostructured electrodes are among the most important candidates for high-capacity battery chemistry. However, the high surface area they possess causes serious issues. First, it would decrease the Coulombic efficiencies. Second, they have significant intakes of liquid electrolytes, which reduce the energy density and increase the battery cost. Third, solid-electrolyte interphase growth is accelerated, affecting the cycling stability. Therefore, the interphase chemistry regarding electrolyte contact is crucial, which was rarely studied. Here, we present a completely new strategy of limiting effective surface area by introducing an "electrolyte-phobic surface". Using this method, the electrolyte intake was limited. The initial Coulombic efficiencies were increased up to ∼88%, compared to ∼60% of the control. The electrolyte-phobic layer of Si particles is also compatible with the binder, stabilizing the electrode for long-term cycling. This study advances the understanding of interphase chemistry, and the introduction of the universal concept of electrolyte-phobicity benefits the next-generation battery designs.

17.
Angew Chem Int Ed Engl ; 60(23): 12999-13006, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33783105

RESUMEN

Despite being an effective flame retardant, trimethyl phosphate (TMPa ) is generally considered as an unqualified solvent for fabricating electrolytes used in graphite (Gr)-based lithium-ion batteries as it readily leads to Gr exfoliation and cell failure. In this work, by adopting the unique solvation structure of localized high-concentration electrolyte (LHCE) to TMPa and tuning the composition of the solvation sheaths via electrolyte additives, excellent electrochemical performance can be achieved with TMPa -based electrolytes in Gr∥LiNi0.8 Mn0.1 Co0.1 O2 cells. After 500 charge/discharge cycles within the voltage range of 2.5-4.4 V, the batteries containing the TMPa -based LHCE with a proper additive can achieve a capacity retention of 85.4 %, being significantly higher than cells using a LiPF6 -organocarbonates baseline electrolyte (75.2 %). Meanwhile, due to the flame retarding effect of TMPa , TMPa -based LHCEs exhibit significantly reduced flammability compared with the conventional LiPF6 -organocarbonates electrolyte.

18.
J Am Chem Soc ; 142(8): 4022-4027, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32017551

RESUMEN

Supported alloy nanoparticles are prevailing alternative low-cost catalysts for both heterogeneous and electrochemical catalytic processes. Gas molecules selectively interacting with one metal element induces a dynamic structural change of alloy nanoparticles under reaction conditions and largely controls their catalytic properties. However, such a multicomponent dynamic-interaction-controlled evolution, both structural and chemical, remains far from clear. Herein, by using state-of-the-art environmental TEM, we directly visualize, in situ at the atomic scale, the evolution of a AuCu alloy nanoparticle supported on CeO2 during CO oxidation. We find that gas molecules can "free" metal atoms on the (010) surface and form highly mobile atom clusters. Remarkably, we discover that CO exposure induces Au segregation and activation on the nanoparticle surface, while O2 exposure leads to the segregation and oxidation of Cu on the particle surface. The as-formed Cu2O/AuCu interface may facilitate CO-O interaction corroborated by DFT calculations. These findings provide insights into the atomistic mechanisms on alloy nanoparticles during catalytic CO oxidation reaction and to a broad scope of rational design of alloy nanoparticle catalysts.

20.
Acc Chem Res ; 52(8): 2201-2209, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31180201

RESUMEN

Lithium ion batteries (LIBs) not only power most of today's hybrid electric vehicles (HEV) and electric vehicles (EV) but also are considered as a promising system for grid-level storage. Large-scale applications for LIBs require substantial improvement in energy density, cost, and lifetime. Layered lithium transition metal (TM) oxides, in particular, Li(NixMnyCoz)O2 (NMC, x + y + z = 1) are the most promising candidates as cathode materials with the potential to increase energy densities and lifetime, reduce costs, and improve safety. In order to further boost Li storage capacity, a great deal of attention has been directed toward developing Ni-rich layered TM oxides. However, structural disorder as a result of Ni/Li exchange in octahedral sites becomes a critical issue when Ni content increases to high values, as it leads to a detrimental effect on Li diffusivity, cycling stability, first-cycle efficiency, and overall electrode performance. Increasing effort has been dedicated to improving the electrochemical performance of layered TM oxides via reduction of cationic mixing. Therefore, it is important to summarize this research field and provide in-depth insight into the impact of Ni/Li disordering on electrochemical characteristics in layered TM oxides and its origin to accelerate the future development of layered TM oxides with high performance. In this Account, we start by introducing the Ni/Li disordering in LiNiO2, the experimental characterization of Ni/Li disordering, and analyzing the impact of Ni/Li disordering on electrochemical characteristics of layered TM oxides. The antisite Ni in the Li layer can limit the rate performance by impeding the Li ion transport. It will also degrade the cycling stability by inducing anisotropic stress in the bulk structure. Nevertheless, the antisite Ni ions do not always bring drawbacks to the electrochemical performance; some studies including our works found that it can improve the thermal stability and the cycling structure stability of Ni-rich NMC materials. We next discuss the driving forces and the kinetic advantages accounting for the Ni/Li exchange and conclude that the steric effect of cation size and the magnetic interactions between TM cations are the two main driving forces to promote the Ni/Li exchange during synthesis and the electrochemical cycling, and the low energy barrier of Ni2+ migration from the 3a site in the TM layer to the 3b site in the Li layer further provides a kinetic advantage. Based on this understanding, we then review the progress made to control the Ni/Li disordering through three main ways: (i) suppressing the driving force from the steric effect by ion exchange; (ii) tuning the magnetic interaction by cationic substitution; (iii) kinetically controlling Ni migration. Finally, our brief outlook on the future development of layered TM oxides with controlled Ni/Li disordering is provided. It is believed that this Account will provide significant understanding and inspirations toward developing high-performance layered TM oxide cathodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA