Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Surg ; 23(1): 118, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170233

RESUMEN

BACKGROUND: Locking plates are commonly used in the treatment of comminuted metaphyseal distal femoral fractures. However, locking plates form a strong structure and promote asymmetrical callus formation, which is not conducive for rapid fracture healing and may increase fracture risk. To overcome this, we designed a micromotion-balancing fixation system based on locking plates. METHODS: Six healthy pigs (Bama miniature pigs) were used to establish a model of bilateral comminuted distal femoral fracture (AO/ASIF: 33-C2). Standard drilling was performed on one of each pig's hind limbs (control group), whereas eccentric drilling was performed on the other hind limb (experimental group). Both femurs were fixed with a 3-hole locking compression plate using 5-mm-diameter screws. At 12 postoperative weeks, all pigs were euthanized and the femurs with compression plates were radiographically examined. The level of fracture healing and loosening/internal fixation failure were recorded. Bone mineral density, number of trabeculae, trabecular morphology, and calcification precipitations were assessed. RESULTS: All pigs survived, and the fractures healed. No complications related to fracture healing, such as infection and internal fixation failure, were noted. The bone mineral density of the near and far cortical calli, number of the near and far cortical callus trabeculae, and difference in bone mineral density between the near and far cortical calli in the experimental group were significantly higher than those in the control group (p < 0.01). However, the difference in the number of trabeculae between the near and far cortical calli was significantly lower in the experimental group than in the control group (p < 0.01). CONCLUSION: This newly designed system provides stable fixation for comminuted distal femoral fracture, increases the overall strain at the fracture site, and balances the strains at the near and far cortices to achieve uniform callus growth and fracture healing.


Asunto(s)
Fracturas Femorales Distales , Fracturas Conminutas , Animales , Porcinos , Fijación Interna de Fracturas , Curación de Fractura , Fracturas Conminutas/cirugía , Placas Óseas
2.
Sensors (Basel) ; 23(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36991596

RESUMEN

Novel optical gas-sensing materials for Au nanoparticle (NP)-modified ZnO nanorod (NR) arrays were fabricated using hydrothermal synthesis and magnetron sputtering on Si substrates. The optical performance of ZnO NR can be strongly modulated by the annealing temperature and Au sputtering time. With exposure to trace quantities of oxygen, the ultraviolet (UV) emission of the photoluminescence (PL) spectra of Au/ZnO samples at ~390 nm showed a large variation in intensity. Based on this mechanism, ZnO NR based oxygen gas sensing via PL spectra variation demonstrated a wide linear detection range of 10-100%, a high response value, and a 1% oxygen content sensitivity detection limit at 225 °C. This outstanding optical oxygen-sensing performance can be attributed to the large surface area to volume ratio, high crystal quality, and high UV emission efficiency of the Au NP-modified ZnO NR arrays. Density functional theory (DFT) simulation results confirmed that after the Au NPs modified the surface of the ZnO NR, the charge at the interface changed, and the structure of Au/ZnO had the lowest adsorption energy for oxygen molecules. These results suggest that Au NP-modified ZnO NR are promising for high-performance optical gas-sensing applications.

3.
Opt Lett ; 47(5): 1145-1148, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35230312

RESUMEN

Ultrafine one-dimensional WO3 nanorods (NRs) with diameters of 10-200 nm have been fabricated using a hydrothermal synthesis method. The optical performance of the WO3 NRs strongly depends on their various defects as well as their crystal quality. Upon exposure to trace quantities of ethanol gas, the photoluminescence (PL) spectra of these nanorod samples under ultraviolet illumination showed a large variation in intensity. WO3-NR-based ethanol gas sensing via PL spectra variation demonstrated a 100 ppm sensitivity detection limit and a wide linear detection range of 200-2000 ppm at 100°C. This outstanding optical ethanol sensing performance can be ascribed to the very large surface area to volume ratio of this material, which increases the density of active sites for ethanol adsorption and reaction with adsorbed oxygen species.

4.
Orthop Surg ; 14(8): 1569-1582, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35673928

RESUMEN

Intervertebral disc degeneration (IVDD) is the most common contributor to low back pain (LBP). Recent studies have found that oxidative stress and reactive oxygen species (ROS) play an important role in IVDD. As a by-product of aerobic respiration, ROS is mainly produced in the mitochondria by the electron transport chain and other mitochondrial located proteins. With the excessive accumulation of ROS, mitochondria are also the primary target of ROS attack in disc cells. A disrupted balance between intracellular ROS production and antioxidant capacity will lead to oxidative stress, which is the key contributor to cell apoptosis, cell senescence, excessive autophagy, and mitochondrial dysfunction. As the pivotal ingredient of oxidative stress, mitochondrial dysfunction manifests as imbalanced mitochondrial dynamics and dysregulated mitophagy. Mitochondria can alter their own dynamics through the process of fusion and fission, so that disabled mitochondria can be separated from the mitochondrial pool. Moreover, mitophagy participates by clearing these dysfunctional mitochondria. Abnormality in any of these processes either increases the production or decreases the clearance of ROS, leading to a vicious cycle that results in the death of intervertebral disc cells in large quantities, combined with degradation of the extracellular matrix and overproduction of matrix metalloproteinase. In this review, we explain the changes in mitochondrial morphology and function during oxidative stress-mediated IVDD and highlight the important role of mitochondria in this process. Eventually, we summarize the IVDD therapeutic strategies targeting mitochondrial dysfunction based on current understanding of the role of oxidative stress in IVDD.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Humanos , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Mitocondrias/metabolismo , Mitofagia , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA