Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 593(7859): 391-398, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34012085

RESUMEN

Coronatine and related bacterial phytotoxins are mimics of the hormone jasmonyl-L-isoleucine (JA-Ile), which mediates physiologically important plant signalling pathways1-4. Coronatine-like phytotoxins disrupt these essential pathways and have potential in the development of safer, more selective herbicides. Although the biosynthesis of coronatine has been investigated previously, the nature of the enzyme that catalyses the crucial coupling of coronafacic acid to amino acids remains unknown1,2. Here we characterize a family of enzymes, coronafacic acid ligases (CfaLs), and resolve their structures. We found that CfaL can also produce JA-Ile, despite low similarity with the Jar1 enzyme that is responsible for ligation of JA and L-Ile in plants5. This suggests that Jar1 and CfaL evolved independently to catalyse similar reactions-Jar1 producing a compound essential for plant development4,5, and the bacterial ligases producing analogues toxic to plants. We further demonstrate how CfaL enzymes can be used to synthesize a diverse array of amides, obviating the need for protecting groups. Highly selective kinetic resolutions of racemic donor or acceptor substrates were achieved, affording homochiral products. We also used structure-guided mutagenesis to engineer improved CfaL variants. Together, these results show that CfaLs can deliver a wide range of amides for agrochemical, pharmaceutical and other applications.


Asunto(s)
Amidas/metabolismo , Ligasas/química , Ligasas/metabolismo , Amidas/química , Aminoácidos/biosíntesis , Aminoácidos/química , Azospirillum lipoferum/enzimología , Azospirillum lipoferum/genética , Ácidos Carboxílicos/metabolismo , Ciclopentanos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Herbicidas/química , Herbicidas/metabolismo , Indenos/química , Isoleucina/análogos & derivados , Isoleucina/biosíntesis , Isoleucina/química , Cinética , Modelos Moleculares , Pectobacterium/enzimología , Pectobacterium/genética , Pseudomonas syringae/enzimología , Pseudomonas syringae/genética
2.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36232620

RESUMEN

Mining of Phospholipase D (PLD) with high activity and stability has attracted strong interest for investigation. A novel PLD from marine Moritella sp. JT01 (MsPLD) was biochemically and structurally characterized in our previous study; however, the short half-life time (t1/2) under its optimum reaction temperature seriously hampered its further applications. Herein, the disulfide bond engineering strategy was applied to improve its thermostability. Compared with wild-type MsPLD, mutant S148C-T206C/D225C-A328C with the addition of two disulfide bonds exhibited a 3.1-fold t1/2 at 35 °C and a 5.7 °C increase in melting temperature (Tm). Unexpectedly, its specific activity and catalytic efficiency (kcat/Km) also increased by 22.7% and 36.5%, respectively. The enhanced activity might be attributed to an increase in the activation entropy by displacing more water molecules by the transition state. The results of molecular dynamics simulations (MD) revealed that the introduction of double disulfide bonds rigidified the global structure of the mutant, which might cause the enhanced thermostability. Finally, the synthesis capacity of the mutant to synthesize phosphatidic acid (PA) was evaluated. The conversion rate of PA reached about 80% after 6 h reaction with wild-type MsPLD but reached 78% after 2 h with mutant S148C-T206C/D225C-A328C, which significantly reduced the time needed for the reaction to reach equilibrium. The present results pave the way for further application of MsPLD in the food and pharmaceutical industries.


Asunto(s)
Moritella , Fosfolipasa D , Disulfuros/química , Estabilidad de Enzimas , Ácidos Fosfatidicos , Fosfolipasa D/genética , Ingeniería de Proteínas/métodos , Temperatura , Agua
3.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232934

RESUMEN

A new phospholipase D from marine Moritella sp. JT01 (MsPLD) was recombinantly expressed and biochemically characterized. The optimal reaction temperature and pH of MsPLD were determined to be 35 °C and 8.0. MsPLD was stable at a temperature lower than 35 °C, and the t1/2 at 4 °C was 41 days. The crystal structure of apo-MsPLD was resolved and the functions of a unique extra loop segment on the enzyme activity were characterized. The results indicated that a direct deletion or fastening of the extra loop segment by introducing disulfide bonds both resulted in a complete loss of its activity. The results of the maximum insertion pressure indicated that the deletion of the extra loop segment significantly decreased MsPLD's interfacial binding properties to phospholipid monolayers. Finally, MsPLD was applied to the synthesis of phosphatidic acid by using a biphasic reaction system. Under optimal reaction conditions, the conversion rate of phosphatidic acid reached 86%. The present research provides a foundation for revealing the structural-functional relationship of this enzyme.


Asunto(s)
Moritella , Fosfolipasa D , Cristalización , Disulfuros , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/metabolismo
4.
Int J Mol Sci ; 22(6)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33809980

RESUMEN

Phospholipases D (PLDs) play important roles in different organisms and in vitro phospholipid modifications, which attract strong interests for investigation. However, the lack of PLD structural information has seriously hampered both the understanding of their structure-function relationships and the structure-based bioengineering of this enzyme. Herein, we presented the crystal structure of a PLD from the plant-associated bacteria Serratia plymuthica strain AS9 (SpPLD) at a resolution of 1.79 Å. Two classical HxKxxxxD (HKD) motifs were found in SpPLD and have shown high structural consistence with several PLDs in the same family. While comparing the structure of SpPLD with the previous resolved PLDs from the same family, several unique conformations on the C-terminus of the HKD motif were demonstrated to participate in the arrangement of the catalytic pocket of SpPLD. In SpPLD, an extented loop conformation between ß9 and α9 (aa228-246) was found. Moreover, electrostatic surface potential showed that this loop region in SpPLD was positively charged while the corresponding loops in the two Streptomyces originated PLDs (PDB ID: 1F0I, 2ZE4/2ZE9) were neutral. The shortened loop between α10 and α11 (aa272-275) made the SpPLD unable to form the gate-like structure which existed specically in the two Streptomyces originated PLDs (PDB ID: 1F0I, 2ZE4/2ZE9) and functioned to stabilize the substrates. In contrast, the shortened loop conformation at this corresponding segment was more alike to several nucleases (Nuc, Zuc, mZuc, NucT) within the same family. Moreover, the loop composition between ß11 and ß12 was also different from the two Streptomyces originated PLDs (PDB ID: 1F0I, 2ZE4/2ZE9), which formed the entrance of the catalytic pocket and were closely related to substrate recognition. So far, SpPLD was the only structurally characterized PLD enzyme from Serratia. The structural information derived here not only helps for the understanding of the biological function of this enzyme in plant protection, but also helps for the understanding of the rational design of the mutant, with potential application in phospholipid modification.


Asunto(s)
Dominio Catalítico , Modelos Moleculares , Fosfolipasa D/química , Conformación Proteica , Serratia/enzimología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Catálisis , Biología Computacional/métodos , Secuencia Conservada , Cristalografía por Rayos X , Fosfolipasa D/genética , Fosfolipasa D/aislamiento & purificación , Fosfolipasa D/metabolismo , Filogenia , Plantas/microbiología , Serratia/clasificación , Serratia/genética
5.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638918

RESUMEN

Mining of phospholipase D (PLD) with altered acyl group recognition except its head group specificity is also useful in terms of specific acyl size phospholipid production and as diagnostic reagents for quantifying specific phospholipid species. Microbial PLDs from Actinomycetes, especially Streptomyces, best fit this process requirements. In the present studies, a new PLD from marine Streptomyces klenkii (SkPLD) was purified and biochemically characterized. The optimal reaction temperature and pH of SkPLD were determined to be 60 °C and 8.0, respectively. Kinetic analysis showed that SkPLD had the relatively high catalytic efficiency toward phosphatidylcholines (PCs) with medium acyl chain length, especially 12:0/12:0-PC (67.13 S-1 mM-1), but lower catalytic efficiency toward PCs with long acyl chain (>16 fatty acids). Molecular docking results indicated that the different catalytic efficiency was related to the increased steric hindrance of long acyl-chains in the substrate-binding pockets and differences in hydrogen-bond interactions between the acyl chains and substrate-binding pockets. The enzyme displayed suitable transphosphatidylation activity and the reaction process showed 26.18% yield with L-serine and soybean PC as substrates. Present study not only enriched the PLD enzyme library but also provide guidance for the further mining of PLDs with special phospholipids recognition properties.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fosfatidilserinas/metabolismo , Fosfolipasa D/metabolismo , Streptomyces/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Concentración de Iones de Hidrógeno , Cinética , Simulación del Acoplamiento Molecular , Fosfatidilcolinas/metabolismo , Fosfolipasa D/química , Fosfolipasa D/genética , Fosfolípidos/metabolismo , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Agua de Mar/microbiología , Homología de Secuencia de Aminoácido , Streptomyces/genética , Especificidad por Sustrato , Temperatura
6.
Biopolymers ; 110(8): e23282, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30977898

RESUMEN

How to characterize short protein sequences to make an effective connection to their functions is an unsolved problem. Here we propose to map the physicochemical properties of each amino acid onto unit spheres so that each protein sequence can be represented quantitatively. We demonstrate the usefulness of this representation by applying it to the prediction of cell penetrating peptides. We show that its combination with traditional composition features yields the best performance across different datasets, among several methods compared. For the convenience of users, a web server has been established for automatic calculations of the proposed features at http://biophy.dzu.edu.cn/SNumD/.


Asunto(s)
Algoritmos , Proteínas/química , Secuencia de Aminoácidos , Análisis de Secuencia de Proteína/métodos , Interfaz Usuario-Computador
7.
Int J Mol Sci ; 19(8)2018 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-30126228

RESUMEN

The effects of N-terminal (1⁻34 amino acids) and C-terminal (434⁻487 amino acids) amino acid sequences on the interfacial binding properties of Phospholipase D from Vibrio parahaemolyticus (VpPLD) were characterized by using monomolecular film technology. Online tools allowed the prediction of the secondary structure of the target N- and C-terminal VpPLD sequences. Various truncated forms of VpPLD with different N- or C-terminal deletions were designed, based on their secondary structure, and their membrane binding properties were examined. The analysis of the maximum insertion pressure (MIP) and synergy factor "a" indicated that the loop structure (1⁻25 amino acids) in the N-terminal segment of VpPLD had a positive effect on the binding of VpPLD to phospholipid monolayers, especially to 1,2-dimyristoyl-sn-glycero-3-phosphoserine and 1,2-dimyristoyl-sn-glycero-3-phosphocholine. The deletion affecting the N-terminus loop structure caused a significant decrease of the MIP and synergy factor a of the protein for these phospholipid monolayers. Conversely, the deletion of the helix structure (26⁻34 amino acids) basically had no influence on the binding of VpPLD to phospholipid monolayers. The deletion of the C-terminal amino acids 434⁻487 did not significantly change the binding selectivity of VpPLD for the various phospholipid monolayer tested here. However, a significant increase of the MIP value for all the phospholipid monolayers strongly indicated that the three-strand segment (434⁻469 amino acids) had a great negative effect on the interfacial binding to these phospholipid monolayers. The deletion of this peptide caused a significantly greater insertion of the protein into the phospholipid monolayers examined. The present study provides detailed information on the effect of the N- and C-terminal segments of VpPLD on the interfacial binding properties of the enzyme and improves our understanding of the interactions between this enzyme and cell membranes.


Asunto(s)
Fosfolipasa D/metabolismo , Fosfolípidos/metabolismo , Vibrio parahaemolyticus/enzimología , Secuencia de Aminoácidos , Humanos , Fosfolipasa D/química , Unión Proteica , Estructura Secundaria de Proteína , Vibriosis/microbiología , Vibrio parahaemolyticus/química , Vibrio parahaemolyticus/metabolismo
8.
Int J Mol Sci ; 18(7)2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28718792

RESUMEN

Using the classical emulsified system and the monomolecular film technique, the substrate specificity of recombinant Gibberella zeae lipase (rGZEL) that originates from Gibberella zeae was characterized in detail. Under the emulsified reaction system, both phospholipase and glycolipid hydrolytic activities were observed, except for the predominant lipase activity. The optimum conditions for different activity exhibition were also determined. Compared with its lipase activity, a little higher ratio of glycolipid hydrolytic activity (0.06) than phospholipase activity (0.02) was found. rGZEL preferred medium chain-length triglycerides, while lower activity was found for the longer-chain triglyceride. Using the monomolecular film technique, we found that the preference order of rGZEL to different phospholipids was 1,2-diacyl-sn-glycero-3-phospho-l-serine (PS) > 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (PG) > 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) > l-α-phosphatidylinositol (PI) > cardiolipin (CL) > 3-sn-phosphatidic acid sodium salt (PA) > l-α-phosphatidylethanolamine (PE), while no hydrolytic activity was detected for sphingomyelin (SM). Moreover, rGZEL showed higher galactolipase activity on 1,2-distearoyimonoglactosylglyceride (MGDG). A kinetic study on the stereo- and regioselectivity of rGZEL was also performed by using three pairs of pseudodiglyceride enantiomers (DDGs). rGZEL presented higher preference for distal DDG enantiomers than adjacent ester groups, however, no hydrolytic activity to the sn-2 position of diglyceride analogs was found. Furthermore, rGZEL preferred the R configuration of DDG enantiomers. Molecular docking results were in concordance with in vitro tests.


Asunto(s)
Emulsiones/metabolismo , Gibberella/enzimología , Lipasa/metabolismo , Proteínas Recombinantes/metabolismo , Biocatálisis , Electroforesis en Gel de Poliacrilamida , Estabilidad de Enzimas , Glucolípidos/química , Glucolípidos/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Lipasa/química , Lipasa/aislamiento & purificación , Lipólisis , Simulación del Acoplamiento Molecular , Fosfolípidos/química , Fosfolípidos/metabolismo , Presión , Proteínas Recombinantes/aislamiento & purificación , Estereoisomerismo , Especificidad por Sustrato , Temperatura
9.
Int J Mol Sci ; 17(6)2016 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-27248999

RESUMEN

Glycerophosphodiester phosphodiesterases (GDPD) are enzymes which degrade various glycerophosphodiesters to produce glycerol-3-phosphate and the corresponding alcohol moiety. Apart from this, a very interesting finding is that this enzyme could be used in the degradation of toxic organophosphorus esters, which has resulted in much attention on the biochemical and application research of GDPDs. In the present study, a novel GDPD from Pyrococcus furiosus DSM 3638 (pfGDPD) was successfully expressed in Escherichia coli and biochemically characterized. This enzyme hydrolyzed bis(p-nitrophenyl) phosphate, one substrate analogue of organophosphorus diester, with an optimal reaction temperature 55 °C and pH 8.5. The activity of pfGDPD was strongly dependent on existing of bivalent cations. It was strongly stimulated by Mn(2+) ions, next was Co(2+) and Ni(2+) ions. Further investigations were conducted on its substrate selectivity towards different phospholipids. The results indicated that except of glycerophosphorylcholine (GPC), this enzyme also possessed lysophospholipase D activity toward both sn1-lysophosphatidylcholine (1-LPC) and sn2-lysophosphatidylcholine (2-LPC). Higher activity was found for 1-LPC than 2-LPC; however, no hydrolytic activity was found for phosphatidylcholine (PC). Molecular docking based on the 3D-modeled structure of pfGDPD was conducted in order to provide a structural foundation for the substrate selectivity.


Asunto(s)
Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Pyrococcus furiosus/enzimología , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Dominio Catalítico , Cinética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Fosfolípidos/metabolismo , Hidrolasas Diéster Fosfóricas/química , Filogenia , Estructura Terciaria de Proteína , Pyrococcus furiosus/genética , Análisis de Secuencia de ADN , Especificidad por Sustrato
10.
Food Sci Technol Int ; 20(8): 567-78, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23922287

RESUMEN

Anchovy protein hydrolysates with high free radical-scavenging activity were prepared by endogenous and commercial enzymes. Various hydrolytic factors (commercial protease composition, protease concentration, temperature, and reaction time) were optimized. Using a single-factor experiment, three commercial proteases (Protamex, Flavourzyme 500 MG, and Alcalase 2.4 L) were selected for further optimization using a simplex lattice design. The optimum composition of Protamex:Flavourzyme 500 MG:Alcalase 2.4 L was found to be 1.1:1.0:0.9. The hydrolytic conditions (commercial protease concentration, temperature, and reaction time) for the optimum protease composition were optimized using a Box-Behnken design. The optimum hydrolytic conditions were as follows: total commercial protease concentration of 3.27%, pH of 7.5, temperature of 55.4℃, and reaction time of 2.7 h. Under these conditions, hydrolysate with a 1, 1-diphenyl-2-picryhydrazyl scavenging activity of 84.7% was obtained. Meanwhile, a degree of hydrolysis of 33.2% and high protein nitrogen recovery of 87.5% were achieved. The amino acid composition of the hydrolysates demonstrated that they have high nutritional value, thereby suggesting that the hydrolysates have potential to be used as raw material for functional food.


Asunto(s)
Compuestos de Bifenilo/química , Proteínas de Peces/química , Depuradores de Radicales Libres/química , Picratos/química , Animales , Peces/clasificación
11.
Artículo en Inglés | MEDLINE | ID: mdl-38878162

RESUMEN

Activation of fatty acids as acyl-adenylates by fatty acid-AMP ligase (FAAL) is a well-established process contributing to the formation of various functional natural products. Enzymatic characterization of FAALs is pivotal for unraveling both the catalytic mechanism and its role in specific biosynthetic pathways. In this study, we recombinantly expressed and characterized a novel FAAL derived from marine Pseudoalteromonas citrea (PcFAAL). PcFAAL was a cold-adapted neutral enzyme, demonstrating optimal activity at 30 °C and pH 7.5. Notably, its specific activity relied on the presence of Mg2+; however, higher concentrations exceeding 10 mM resulted in inhibition of enzyme activity. Various organic solvents, especially water-immiscible organic solvents, demonstrated an activating effect on the activity of PcFAAL on various fatty acids. The specific activity exhibited a remarkable 50-fold increase under 4% (v/v) n-hexane compared to the aqueous system. PcFAAL displayed a broad spectrum of fatty acid substrate selectivity, with the highest specific activity for octanoic acid (C8:0), and the catalytic efficiency (kcat/Km) for octanoic acid was determined to be 1.8 nM-1·min-1. Furthermore, the enzyme demonstrated biocatalytic promiscuity in producing a class of N-acyl amino acid natural products, as verified by LC-ESI MS. Results indicated that the PcFAAL exhibits promiscuity towards 10 different kinds of amino acids and further demonstrated their potential value in the biosynthesis of corresponding functional N-acyl amino acids.

12.
J Agric Food Chem ; 71(43): 16352-16361, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37800479

RESUMEN

Nonspecific phospholipase C (NPC) plays a pivotal role in hydrolyzing phospholipids, releasing diacylglycerol─an essential second messenger. Extensive research has elucidated the structure and function of bacterial and plant NPCs, but our understanding of their fungal counterparts remains limited. Here, we present the first crystal structure of a fungal NPC derived from Rasamsonia emersonii (RePLC), unraveling its distinguishable features divergent from other known phospholipase C. Remarkably, the structure of RePLC contains solely the phosphoesterase domain without the crucial C-terminal domain (CTD) found in plant NPCs, although CTD is important for their activity. Through a comparative analysis of structural features among NPCs from diverse species combined with structure-based mutation analyses and bioinformatics methods, we propose a potential molecular mechanism that may universally underlie the catalysis of phospholipid hydrolysis in fungal NPCs. Furthermore, our study sheds light on the captivating evolutionary trajectory of enzymes across diverse species.


Asunto(s)
Fosfolípidos , Fosfolipasas de Tipo C , Fosfolipasas de Tipo C/genética , Hidrólisis , Fosfolípidos/química , Catálisis
13.
Sci Rep ; 13(1): 11420, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452067

RESUMEN

To determine the association between cell-free DNA fetal fraction (cffDNA) and various prenatal characters to better guide the clinical application of noninvasive prenatal screening (NIPS), a retrospective cohort study of 27,793 women with singleton pregnancies was conducted. Results indicated that no significant difference on cffDNA between trisomy/sex chromosome aneuploidy (SCA) and non-trisomy groups was found. However, the fetal fraction (FF) in the T18 and T13 subgroups were significantly lower than that in the non-trisomy group, while the FF in the T21 group was significantly higher than the non-trisomy group. Pearson's correlation analysis revealed a positive correlation between √FF and gestational week in the T21, SCA, and non-trisomy groups. A negative correlation between maternal age and √FF in T21 and non-trisomy cases was found, but a positive correlation in SCA group. Compared to the decreasing trend in FF in the T21 group, no significant difference was observed in the SCA group. The √FF level was negatively correlated to maternal BMI in T21 and non-trisomy group, while a positive correlation in SCA group. FF was close related to the result of NIPS and related maternal factors. Though NIPS has increased accuracy, the complexity still should be recognized especially in clinical practice.


Asunto(s)
Ácidos Nucleicos Libres de Células , Pruebas Genéticas , Embarazo , Humanos , Femenino , Estudios Retrospectivos , Edad Materna , Aberraciones Cromosómicas Sexuales , Diagnóstico Prenatal/métodos , Aneuploidia
14.
Endocrinology ; 164(7)2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37232361

RESUMEN

Lipid metabolism is closely linked to adiposity. Prader-Willi syndrome (PWS) is a typical genetic disorder causing obesity; however, the distinct lipidomic profiles in PWS children have not been thoroughly investigated. Herein, serum lipidomics analyses were simultaneously explored in PWS, simple obesity (SO), and normal children (Normal). Results indicated that the total concentration of phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) in the PWS group were significantly deceased compared with both the SO and the Normal group. In contrast, compared with the Normal group, there was an overall significant increase in triacylglycerol (TAG) levels in both the PWS and the SO groups, with the highest found in SO group. Thirty-nine and 50 differential lipid species were screened among 3 groups: between obesity (PWS and SO) and the Normal group. Correlation analysis revealed distinct profiles in PWS that was different from other 2 groups. Notably, PC (P16:0/18:1), PE (P18:0-20:3), PE (P18:0-20:4)) showed significant negative correlation with body mass index (BMI) only in the PWS group. PE (P16:0-18:2) showed a negative association with BMI and weight in the PWS group, but significant positive correlation in the SO group; no statistically significant association was found in the Normal group. We also found a significant negative correlation between Blautia genus abundance and several significantly changed lipids, including LPC (14:0), LPC (16:0), TAG (C50:2/C51:9), TAG (C52:2/C53:9), TAG (C52:3/C53:10), and TAG (C52:4/C53:11), but no significant correlation in the Normal group and the SO group. Similarly, in the PWS group, the Neisseria genus was significantly negatively associated with acylcarnitine (CAR) (14:1), CAR (18:0), PE (P18:0/20:3), and PE (P18:0/20:4), and extremely positively associated with TAG (C52:2/C53:9); no obvious correlations were observed in the Normal group and the SO group.


Asunto(s)
Microbioma Gastrointestinal , Obesidad Mórbida , Síndrome de Prader-Willi , Humanos , Niño , Síndrome de Prader-Willi/genética , Obesidad/complicaciones , Índice de Masa Corporal , Lípidos
15.
PLoS One ; 18(5): e0286091, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37205651

RESUMEN

This work describes a novel extracellular lipolytic carboxylester hydrolase named FAL, with lipase and phospholipase A1 (PLA1) activity, from a newly isolated filamentous fungus Ascomycota CBS strain, identified as Fusarium annulatum Bunigcourt. FAL was purified to about 62-fold using ammonium sulphate precipitation, Superdex® 200 Increase gel filtration and Q-Sepharose Fast Flow columns, with a total yield of 21%. The specific activity of FAL was found to be 3500 U/mg at pH 9 and 40°C and 5000 U/mg at pH 11 and 45°C, on emulsions of triocanoin and egg yolk phosphatidylcholine, respectively. SDS-PAGE and zymography analysis estimated the molecular weight of FAL to be 33 kDa. FAL was shown to be a PLA1 with a regioselectivity to the sn-1 position of surface-coated phospholipids esterified with α-eleostearic acid. FAL is a serine enzyme since its activity on triglycerides and phospholipids was completely inhibited by the lipase inhibitor Orlistat (40 µM). Interestingly, compared to Fusarium graminearum lipase (GZEL) and the Thermomyces lanuginosus lipase (Lipolase®), this novel fungal (phospho)lipase showed extreme tolerance to the presence of non-polar organic solvents, non-ionic and anionic surfactants, and oxidants, in addition to significant compatibility and stability with some available laundry detergents. The analysis of washing performance showed that it has the capability to efficiently eliminate oil-stains. Overall, FAL could be an ideal choice for application in detergents.


Asunto(s)
Detergentes , Olea , Detergentes/farmacología , Detergentes/química , Olea/metabolismo , Lipasa/metabolismo , Tensoactivos , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Temperatura
16.
World J Microbiol Biotechnol ; 28(11): 3227-37, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22927012

RESUMEN

In order to search for valuable and extremely thermo-stable enzymes that could be used in the protein hydrolysis industry, the gene corresponding to a leucine aminopeptidase from Geobacillus thermodenitrificans NG80-2 (GtLAP) was cloned and expressed in E. coli. The recombinant enzyme was purified, and its characteristics were examined. Meanwhile, potential applications of GtLAP in the hydrolysis of anchovy proteins were also investigated. GtLAP was overexpressed in IPTG-induced E. coli BL21 (pET28a-LAP) as a soluble protein, and was purified to homogeneity by nickel-chelate chromatography to a specific activity of 125 ± 8.75 U/mg proteins. The molecular mass of GtLAP was estimated to be 55 kDa by SDS-PAGE analysis. The optimal reaction temperature and pH of GtLAP were 70 °C and 8.0, respectively. Under optimal conditions, GtLAP showed a marked preference for Leu-p-nitroanilide, followed by Met- and Phe-derivatives. Activity of GtLAP was strongly stimulated by Ni²âº ions, but was strongly inhibited by Hg²âº. Conformational studies via circular dichroism spectroscopy indicated that various factors could influence the secondary structure of GtLAP to various extents and further induce changes in enzymatic activity. Results of hydrolytic experiment showed that combining GtLAP with endogenous enzymes could significantly increase the degree of hydrolysis to anchovy proteins and concentrations of free amino acids in hydrolysates. In this regard, GtLAP could potentially be used in the protein hydrolysis industry.


Asunto(s)
Geobacillus/enzimología , Leucil Aminopeptidasa/química , Leucil Aminopeptidasa/metabolismo , Dicroismo Circular , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Estabilidad de Enzimas , Escherichia coli/genética , Expresión Génica , Geobacillus/química , Concentración de Iones de Hidrógeno , Peso Molecular , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Temperatura
17.
Foods ; 11(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36553811

RESUMEN

Diacylglycerols (DAGs) display huge application prospectives in food industries. Therefore, new strategies to produce diacylglycerides are needed. Malassezia globose lipase (SMG1) could be used to synthesize DAGs. However, the poor thermostability of SMG1 seriously hampers its application. Herein, a rational design was used to generate a more thermostable SMG1. Compared with the wild type (WT), the M5D mutant (Q34P/A37P/M176V/G177A/M294R/ G28C-P206C), which contains five single-point mutations and one additional disulfide bond, displayed a 14.0 °C increase in the melting temperature (Tm), 5 °C in the optimal temperature, and 1154.3-fold in the half-life (t1/2) at 55 °C. Meanwhile, the specific activity towards DAGs of the M5D variant was improved by 3.0-fold compared to the WT. Molecular dynamics (MD) simulations revealed that the M5D mutant showed an improved rigid structure. Additionally, the WT and the M5D variants were immobilized and used for the production of DAGs. Compared with the WT, the immobilized M5D-catalyzed esterification showed a 9.1% higher DAG content and a 22.9% increase in residual activity after nine consecutive cycles. This study will pave the way for the industrial application of SMG1.

18.
Fish Shellfish Immunol ; 30(4-5): 1095-108, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21333741

RESUMEN

The serum of rabbitfish (Siganus oramin) has been confirmed previously to have killing effect to Cryptocaryon irritans, an important marine ciliate protozoan that causes a disease referred to as "marine white spot disease". Herein, we find the serum of the rabbitfish also shows antibacterial activity against both gram-positive and gram-negative bacteria and has killing effect on two other parasites: Trypanosoma brucei brucei, Ichthyophthirius multifiliis. Results of scanning electron microscopy indicated that after treating with rabbitfish serum, the surface of the Staphylococcus aureus was wrinkled and pores were formed on the surface of Escherichia coli. Serum of the rabbitfish possesses a strong killing effect to Ichthyophthirius multifiliis in vitro, causing a similar effect as to C. irritans. The serum of rabbitfish also showed strong killing effect to T. b. brucei in vitro, with the minimus trypanocidal titre (MTT) only to be 1.5% in 1 h. Results of laser confocal fluorescence microscopy indicated that rabbitfish serum could also induce cell rupture of T. b. brucei. A novel antimicrobial protein (SR-LAAO) was isolated from the serum of rabbitfish by using ultrafiltration, reversed phase high performance liquid chromatography (RP-HPLC) and Native polyacrylamide gel electrophoresis (Native-PAGE). Results of gel overlay assay showed that the protein could act alone to inhibit the growth of S. aureus and E. coli. Results of western blot and automated Edman degradation showed that it was the same as the antiparasitic protein (APP) reported before to have killing effect on C. irritans. Full length cDNA sequence of the SR-LAAO was cloned. BLAST research suggested that the cDNA of SR-LAAO has a close similarity with a number of L-amino acid oxidases (LAAOs) and possesses two conserved motifs that exist in LAAOs. Combined, these results demonstrate that this protein which has antimicrobial activity to some pathogenic organisms was a novel LAAO found in the serum of rabbitfish. Immunohistochemical analysis demonstrated tissue specific expression and localization of SR-LAAO in the spleen, kidney, gill and blood of the rabbitfish, but was not found in other tissues. These results suggest that this protein may contribute considerably to the host non-specific immune defense mechanism to combat microbes of the rabbitfish and has the potency for using in future drug development.


Asunto(s)
Infecciones Bacterianas/veterinaria , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , L-Aminoácido Oxidasa/aislamiento & purificación , Perciformes/inmunología , Secuencia de Aminoácidos , Animales , Infecciones Bacterianas/inmunología , Secuencia de Bases , Clonación Molecular , Enfermedades de los Peces/enzimología , Enfermedades de los Peces/parasitología , Bacterias Gramnegativas/inmunología , Bacterias Gramnegativas/ultraestructura , Bacterias Grampositivas/inmunología , Bacterias Grampositivas/ultraestructura , Inmunohistoquímica/veterinaria , L-Aminoácido Oxidasa/genética , L-Aminoácido Oxidasa/farmacología , Pruebas de Sensibilidad Microbiana/veterinaria , Microscopía Electrónica de Rastreo/veterinaria , Datos de Secuencia Molecular , Perciformes/sangre , Filogenia , ARN/química , ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Alineación de Secuencia
19.
Int J Mol Sci ; 12(11): 7609-25, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22174620

RESUMEN

Experiments were carried out to investigate the effects of various factors on the activity and conformation of recombinant leucine aminopeptidase of Bacillus kaustophilus CCRC 11223 (BkLAP) and potential utilization of BkLAP in the hydrolysis of anchovy protein. Optimal temperature and pH of BkLAP were 70 °C and 8.0 in potassium-phosphate buffer, respectively, and the activity was strongly stimulated by Ni(2+), followed by Mn(2+) and Co(2+). Conformational studies via circular dichroism spectroscopy indicated that various factors could influence the secondary structure of BkLAP to different extents and further induce the changes in enzymatic activity. The secondary structure of BkLAP was slightly modified by Ni(2+) at the concentration of 1×10(-4) M, however, significant changes on the secondary structures of the enzyme were observed when Hg(2+) was added to the concentration of 1×10(-4) M. The potential application of BkLAP was evaluated through combination with the commercial or endogenous enzyme to hydrolysis the anchovy protein. Results showed that combining the BkLAP with other enzymes could significantly increase the degree of hydrolysis and amino acid component of hydrolysate. In this regard, BkLAP is a potential enzyme that can be used in the protein hydrolysate industry.


Asunto(s)
Bacillus/enzimología , Proteínas de Peces/metabolismo , Leucil Aminopeptidasa/química , Hidrolisados de Proteína/biosíntesis , Aminoácidos/química , Animales , Bacillus/genética , Peces , Calor , Concentración de Iones de Hidrógeno , Hidrólisis , Leucil Aminopeptidasa/genética , Peso Molecular , Plásmidos/genética , Hidrolisados de Proteína/metabolismo , Proteínas Recombinantes/química
20.
J Agric Food Chem ; 69(37): 11110-11120, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34516129

RESUMEN

The mechanism of active site loops of Streptomyces phospholipase D (PLD) binding to the lipid-water interface for catalytic reactions still remains elusive. A flexible loop (residues 376-382) in the active site of Streptomyces klenkii PLD (SkPLD) is conserved within PLDs in most of the Streptomyces species. The residue Ser380 was found to be essential for the enzyme's adsorption to the interface and its substrate recognition. The S380V mutant showed a 4.8 times higher catalytic efficiency and nearly seven times higher adsorption equilibrium coefficient compared to the wild-type SkPLD. The monolayer film technique has confirmed that the substitution of Ser380 with valine in the loop exhibited positive interaction between the enzyme and PCs with different acyl chain lengths. The results of the interfacial binding properties indicated that the S380V mutant might display suitable phosphatidylserine synthesis activity. The present study will be helpful to explain the role of residue 380 in the active site loops of Streptomyces PLD.


Asunto(s)
Fosfolipasa D , Streptomyces , Dominio Catalítico , Interacciones Hidrofóbicas e Hidrofílicas , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Fosfolípidos , Streptomyces/genética , Streptomyces/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA