Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 106(46): 19593-8, 2009 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-19887632

RESUMEN

Dysbindin has been implicated in the pathogenesis of schizophrenia, but little is known about how dysbindin affects neuronal function in the circuitry underlying psychosis and related behaviors. Using a dysbindin knockout line (dys(-/-)) derived from the natural dysbindin mutant Sandy mice, we have explored the role of dysbindin in dopamine signaling and neuronal function in the prefrontal cortex (PFC). Combined cell imaging and biochemical experiments revealed a robust increase in the dopamine receptor D2, but not D1, on cell surface of neurons from dys(-/-) cortex. This was due to an enhanced recycling and insertion, rather than reduced endocytosis, of D2. Disruption of dysbindin gene resulted in a marked decrease in the excitability of fast-spiking (FS) GABAergic interneurons in both PFC and striatum. Dys(-/-) mice also exhibited a decreased inhibitory input to pyramidal neurons in layer V of PFC. The increased D2 signaling in dys(-/-) FS interneurons was associated with a more pronounced increase in neuronal firing in response to D2 agonist, compared to that in wild-type interneurons. Taken together, these results suggest that dysbindin regulates PFC function by facilitating D2-mediated modulation of GABAergic function.


Asunto(s)
Proteínas Portadoras/metabolismo , Corteza Prefrontal/fisiología , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Ácido gamma-Aminobutírico/fisiología , Animales , Proteínas Portadoras/genética , Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiología , Disbindina , Proteínas Asociadas a la Distrofina , Ratones , Ratones Mutantes , Actividad Motora/genética , Neuronas/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/metabolismo
2.
J Physiol ; 588(Pt 15): 2823-38, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20547673

RESUMEN

Abnormal influx of Ca(2+) is thought to contribute to the neuronal injury associated with a number of brain disorders, and Ca(2+)-permeable AMPA receptors (CP-AMPARs) play a critical role in the pathological process. Despite the apparent vulnerability of fast-spiking (FS) interneurons in neurological disorders, little is known about the CP-AMPARs expressed by functionally identified FS interneurons in the developing prefrontal cortex (PFC). We investigated the development of inwardly rectifying AMPA receptor-mediated currents and their correlation with NMDA receptor-mediated currents in FS interneurons in the rat PFC. We found that 78% of the FS interneurons expressed a low rectification index, presumably Ca(2+)-permeable AMPARs, with only 22% exhibiting AMPARs with a high rectification index, probably Ca(2+) impermeable (CI). FS interneurons with CP-AMPARs exhibited properties distinct from those expressing CI-AMPARs, although both displayed similar morphologies, passive membrane properties and AMPA currents at resting membrane potentials. The AMPA receptors also exhibited dramatic changes during cortical development with significantly more FS interneurons with CP-AMPARs and a clearly decreased rectification index during adolescence. In addition, FS interneurons with CP-AMPARs exhibited few or no NMDA currents, distinct frequency-dependent synaptic facilitation, and protracted maturation in short-term plasticity. These data suggest that CP-AMPARs in FS interneurons may play a critical role in neuronal integration and that their characteristic properties may make these cells particularly vulnerable to disruptive influences in the PFC, thus contributing to the onset of many psychiatric disorders.


Asunto(s)
Potenciales de Acción/fisiología , Señalización del Calcio/fisiología , Interneuronas/fisiología , Corteza Prefrontal/embriología , Corteza Prefrontal/fisiología , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Envejecimiento/fisiología , Animales , Femenino , Masculino , Ratas , Ratas Sprague-Dawley
3.
Int J Neuropsychopharmacol ; 12(10): 1395-408, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19435549

RESUMEN

N-methyl-D-aspartic acid receptor (NMDAR) hypofunction has long been implicated in schizophrenia and NMDARs on gamma-aminobutyric acid (GABA)ergic interneurons are proposed to play an essential role in the pathogenesis. However, controversial results have been reported regarding the regulation of NMDAR expression, and direct evidence of how NMDAR antagonists act on specific subpopulations of prefrontal interneurons is missing. We investigated the effects of the NMDAR antagonist dizocilpine (MK-801) on the expression of NMDAR subtypes in the identified interneurons in young adult rat prefrontal cortex (PFC) by using laser microdissection and real-time polymerase chain reaction, combined with Western blotting and immunofluorescent staining. We found that MK-801 induced distinct changes of NMDAR subunits in the parvalbumin-immunoreactive (PV-ir) interneurons vs. pyramidal neurons in the PFC circuitry. The messenger RNA (mRNA) expression of all NMDAR subtypes, including NR1 and NR2A to 2D, exhibited inverted-U dose-dependent changes in response to MK-801 treatment in the PFC. In contrast, subunit mRNAs of NMDARs in PV-ir interneurons were significantly down-regulated at low doses, unaltered at medium doses, and significantly decreased again at high doses, suggesting a biphasic dose response to MK-801. The differential effects of MK-801 in mRNA expression of NMDAR subunits were consistent with the protein expression of NR2A and NR2B subunits revealed with Western blotting and double immunofluorescent staining. These results suggest that PV-containing interneurons in the PFC exhibit a distinct responsiveness to NMDAR antagonism and that NMDA antagonist can differentially and dose-dependently regulate the functions of pyramidal neurons and GABAergic interneurons in the prefrontal cortical circuitry.


Asunto(s)
Maleato de Dizocilpina/farmacología , Interneuronas/metabolismo , Parvalbúminas/metabolismo , Corteza Prefrontal/metabolismo , Subunidades de Proteína/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Factores de Edad , Animales , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Femenino , Interneuronas/química , Interneuronas/efectos de los fármacos , Parvalbúminas/análisis , Corteza Prefrontal/química , Corteza Prefrontal/efectos de los fármacos , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/genética , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/biosíntesis , Receptores de N-Metil-D-Aspartato/genética
4.
Nat Neurosci ; 8(2): 187-93, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15657596

RESUMEN

Neuronal synaptic connections can be potentiated or depressed by paired pre- and postsynaptic spikes, depending on the spike timing. We show that in cultured rat hippocampal neurons a calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated potentiation process and a calcineurin-mediated depression process can be activated concomitantly by spike triplets or quadruplets. The integration of the two processes critically depends on their activation timing. Depression can cancel previously activated potentiation, whereas potentiation tends to override previously activated depression. The time window for potentiation to dominate is about 70 ms, beyond which the two processes cancel. These results indicate that the signaling machinery underlying spike timing-dependent plasticity (STDP) may be separated into functional modules that are sensitive to the spatiotemporal dynamics (rather than the amount) of calcium influx. The timing dependence of modular interaction provides a quantitative framework for understanding the temporal integration of STDP.


Asunto(s)
Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Calcineurina/fisiología , Inhibidores de la Calcineurina , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Proteínas Quinasas Dependientes de Calcio-Calmodulina/fisiología , Células Cultivadas , Estimulación Eléctrica/métodos , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/citología , Inhibición Neural/efectos de los fármacos , Inhibición Neural/efectos de la radiación , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/efectos de la radiación , Neuronas/efectos de los fármacos , Neuronas/efectos de la radiación , Técnicas de Placa-Clamp/métodos , Ratas , Sinapsis/efectos de los fármacos , Sinapsis/efectos de la radiación , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/efectos de la radiación , Factores de Tiempo
5.
Physiol Behav ; 77(4-5): 551-5, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12526998

RESUMEN

Activity-dependent synaptic modification is critical for the development and function of the nervous system. Recent experimental discoveries suggest that both the extent and the direction of modification may depend on the precise timing of pre- and postsynaptic action potentials (spikes). This phenomenon, termed spike timing-dependent plasticity (STDP), provides a new, quantitative interpretation of Hebb's rule and raises intriguing questions regarding the fundamental processes of cellular signaling. In this article, we summarize previous results obtained in a hippocampal culture system, where an asymmetric window of spike timing was found for paired pre- and postsynaptic spiking to induce STDP. We also discuss our recent studies using a "triplet-spiking" paradigm that reveals nonlinear, temporally asymmetric integration of STDP.


Asunto(s)
Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Animales , Electrofisiología , Humanos , Potenciación a Largo Plazo/fisiología , Técnicas de Placa-Clamp , Factores de Tiempo
6.
Neuropharmacology ; 62(4): 1808-22, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22182778

RESUMEN

N-methyl-d-aspartic acid (NMDA) receptors are critical for both normal brain functions and the pathogenesis of schizophrenia. We investigated the functional changes of glutamatergic receptors in the pyramidal cells and fast-spiking (FS) interneurons in the adolescent rat prefrontal cortex in MK-801 model of schizophrenia. We found that although both pyramidal cells and FS interneurons were affected by in vivo subchronic blockade of NMDA receptors, MK-801 induced distinct changes in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA receptors in the FS interneurons compared with pyramidal cells. Specifically, the amplitude, but not the frequency, of AMPA-mediated miniature excitatory postsynaptic currents (mEPSCs) in FS interneurons was significantly decreased whereas both the frequency and amplitude in pyramidal neurons were increased. In addition, MK-801-induced new presynaptic NMDA receptors were detected in the glutamatergic terminals targeting pyramidal neurons but not FS interneurons. MK-801 also induced distinct alterations in FS interneurons but not in pyramidal neurons, including significantly decreased rectification index and increased calcium permeability. These data suggest a distinct cell-type specific and homeostatic synaptic scaling and redistribution of AMPA and NMDA receptors in response to the subchronic blockade of NMDA receptors and thus provide a direct mechanistic explanation for the NMDA hypofunction hypothesis that have long been proposed for the schizophrenia pathophysiology.


Asunto(s)
Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Interneuronas/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Potenciales de Acción/efectos de los fármacos , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Interneuronas/citología , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Corteza Prefrontal/citología , Células Piramidales/citología , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos
7.
Neuropsychopharmacology ; 34(8): 2028-40, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19242405

RESUMEN

In the prefrontal cortex, N-methyl-D-aspartic acid (NMDA) receptors (NMDARs) are critical not only for normal prefrontal functions but also for the pathological processes of schizophrenia. Little is known, however, about the developmental properties of NMDARs in the functionally diverse sub-populations of interneurons. We investigated the developmental changes of NMDARs in rat prefrontal interneurons using patch clamp recording in cortical slices. We found that fast-spiking (FS) interneurons exhibited properties of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA currents distinct from those in regular spiking (RS) and low-threshold spiking (LTS) interneurons, particularly during the adolescent period. In juvenile animals, most (73%) of the FS cells demonstrated both AMPA and NMDA currents. The NMDA currents, however, gradually became undetectable during cortical development, with most (74%) of the FS cells exhibiting no NMDA current in adults. In contrast, AMPA and NMDA currents in RS and LTS interneurons were relatively stable, without significant changes from juveniles to adults. Moreover, even in FS cells with NMDA currents, the NMDA/AMPA ratio dramatically decreased during the adolescent period but returned to juvenile level in adults, compared with the relatively stable ratios in RS and LTS interneurons. These data suggest that FS interneurons in the prefrontal cortex undergo dramatic changes in glutamatergic receptors during the adolescent period. These properties may make FS cells particularly sensitive and vulnerable to epigenetic stimulation, thus contributing to the onset of many psychiatric disorders, including schizophrenia.


Asunto(s)
Diferenciación Celular/fisiología , Ácido Glutámico/metabolismo , Interneuronas/metabolismo , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Envejecimiento/metabolismo , Animales , Animales Recién Nacidos , Forma de la Célula/fisiología , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Dendritas/ultraestructura , Epigénesis Genética/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas del GABA/farmacología , Interneuronas/citología , Interneuronas/efectos de los fármacos , Lisina/análogos & derivados , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Corteza Prefrontal/citología , Ratas , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Esquizofrenia/etiología , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatología , Coloración y Etiquetado , Transmisión Sináptica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA