Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 98(1): e0078923, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38168677

RESUMEN

Zika virus (ZIKV) infection caused neurological complications and male infertility, leading to the accumulation of antigen-specific immune cells in immune-privileged organs (IPOs). Thus, it is important to understand the immunological responses to ZIKV in IPOs. We extensively investigated the ZIKV-specific T cell immunity in IPOs in Ifnar1-/- mice, based on an immunodominant epitope E294-302 tetramer. The distinct kinetics and functions of virus-specific CD8+ T cells infiltrated into different IPOs were characterized, with late elevation in the brain and spinal cord. Single epitope E294-302-specific T cells can account for 20-60% of the total CD8+ T cells in the brain, spinal cord, and testicle and persist for at least 90 days in the brain and spinal cord. The E294-302-specific TCRαßs within the IPOs are featured with the majority of clonotypes utilizing TRAV9N-3 paired with diverse TRBV chains, but with distinct αß paired clonotypes in 7 and 30 days post-infection. Specific chemokine receptors, Ccr2 and Ccr5, were selectively expressed in the E294-302-specific CD8+ T cells within the brain and testicle, indicating an IPO-oriented migration of virus-specific CD8+ T cells after infection. Overall, this study adds to the understanding of virus-specific CD8+ T cell responses for controlling and clearing ZIKV infection in IPOs.IMPORTANCEThe immune-privileged organs (IPOs), such as the central nervous system and testicles, presented pathogenicity and inflammation after Zika virus (ZIKV) infection with infiltrated CD8+ T cells. Our data show that CD8+ T cells keep up with virus increases and decreases in immune-privileged organs. Furthermore, our study provides the first ex vivo comparative analyses of the composition and diversity related to TCRα/ß clonotypes across anatomical sites and ZIKV infection phases. We show that the vast majority of TCRα/ß clonotypes in tissues utilize TRAV9N-3 with conservation. Specific chemokine expression, including Ccr2 and Ccr5, was found to be selectively expressed in the E294-302-specific CD8+ T cells within the brain and testicle, indicating an IPO-oriented migration of the virus-specific CD8+ T cells after the infection. Our study adds insights into the anti-viral immunological characterization and chemotaxis mechanism of virus-specific CD8+ T cells after ZIKV infection in different IPOs.


Asunto(s)
Linfocitos T CD8-positivos , Privilegio Inmunológico , Infección por el Virus Zika , Animales , Masculino , Ratones , Encéfalo/inmunología , Encéfalo/virología , Linfocitos T CD8-positivos/inmunología , Receptor de Interferón alfa y beta/genética , Virus Zika , Infección por el Virus Zika/inmunología , Ratones Noqueados , Testículo/inmunología , Testículo/virología
2.
Proc Natl Acad Sci U S A ; 119(20): e2123261119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35561222

RESUMEN

Mammalian target of rapamycin complex 1 (mTORC1) senses amino acids to control cell growth, metabolism, and autophagy. Some amino acids signal to mTORC1 through the Rag GTPase, whereas glutamine and asparagine activate mTORC1 through a Rag GTPase-independent pathway. Here, we show that the lysosomal glutamine and asparagine transporter SNAT7 activates mTORC1 after extracellular protein, such as albumin, is macropinocytosed. The N terminus of SNAT7 forms nutrient-sensitive interaction with mTORC1 and regulates mTORC1 activation independently of the Rag GTPases. Depletion of SNAT7 inhibits albumin-induced mTORC1 lysosomal localization and subsequent activation. Moreover, SNAT7 is essential to sustain KRAS-driven pancreatic cancer cell growth through mTORC1. Thus, SNAT7 links glutamine and asparagine signaling from extracellular protein to mTORC1 independently of the Rag GTPases and is required for macropinocytosis-mediated mTORC1 activation and pancreatic cancer cell growth.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Lisosomas , Diana Mecanicista del Complejo 1 de la Rapamicina , Pinocitosis , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Asparagina/metabolismo , Glutamina/metabolismo , Humanos , Lisosomas/enzimología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Transducción de Señal
3.
J Virol ; 97(5): e0165822, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37071015

RESUMEN

Japanese encephalitis virus (JEV), with neurotoxic and neuroinvasive properties, is the major cause of human viral encephalitis in Asia. Although Guillain-Barré syndrome caused by JEV infections is not frequent, a few cases have been reported in recent years. To date, no existing animal model for JEV-induced peripheral nerve injury (PNI) has been established, and thus the pathogenic mechanism is not clarified. Therefore, an animal model is urgently required to clarify the correlation between JEV infection and PNI. In the present study, we used JEV GIb strain of NX1889 to establish a mouse model of JEV infection. The general neurological signs emerged on day 3 of modeling. The motor function continued to deteriorate, reaching a maximum at 8 to 13 days postinfection (dpi) and gradually recovered after 16 dpi. The injuries of 105 PFU and 106 PFU groups were the most severe. Transmission electron microscopy and immunofluorescence staining showed varying degrees of demyelination and axonal degeneration in the sciatic nerves. The electrophysiological recordings demonstrated the presence of demyelinating peripheral neuropathy with reduced nerve conduction velocity. The decreased amplitudes and the prolonged end latency revealed axonal-type motor neuropathy. Demyelination is predominant in the early stage, followed by axonal injury. The expression level of JEV-E protein and viral RNA was elevated in the injured sciatic nerves, suggesting that it may cause PNI at the early stage. Inflammatory cell infiltration and increased inflammatory cytokines indicated that neuroinflammation is involved in JEV-induced PNI. IMPORTANCE JEV is a neurotropic flavivirus belonging to the Flaviviridae family and causes high mortality and disability rates. It invades the central nervous system and induces acute inflammatory injury and neuronal death. Thus, JEV infection is a major global public health concern. Previously, motor dysfunction was mainly attributed to central nervous system damage. Our knowledge regarding JEV-induced PNI is vague and neglected. Therefore, a laboratory animal model is essential. Herein, we showed that C57BL/6 mice can be used to study JEV-induced PNI through multiple approaches. We also demonstrated that viral loads might be positively correlated with lesion severity. Therefore, inflammation and direct virus infection may be the putative mechanisms underlying JEV-induced PNI. The results of this study laid the foundation for further elucidation of the pathogenesis mechanisms of PNI caused by JEV.


Asunto(s)
Modelos Animales de Enfermedad , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Traumatismos de los Nervios Periféricos , Animales , Humanos , Ratones , Enfermedades Desmielinizantes , Virus de la Encefalitis Japonesa (Especie)/fisiología , Ratones Endogámicos C57BL
4.
J Med Virol ; 96(4): e29567, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38546093

RESUMEN

Emerging pathogenic tick-borne viruses (TBVs) have attracted a great deal of attention due to their significant impact on human and animal health. A novel orthonairovirus named Dadong virus (DDV) was isolated from Haemaphysalis concinna ticks in the Changbai Mountain region on the China-North Korea border. DDV can induce cytopathic effects in mammalian and human cell lines. Phylogenetic analysis showed that it belongs to the genus Orthonairovirus, family Nairoviridae, exhibiting 72.4%-81.3% nucleic acid identity to Tofla orthonairovirus, known to cause lethal infection in IFNAR KO mice. The first serological evidence of DDV circulating in cattle and mice was also obtained, with 4.0% (1/25) of cattle and 2.27% (1/44) of mice seropositive for DDV. Further investigations, including serological surveys using human samples, are required to assess the public health risk posed by DDV.


Asunto(s)
Virus ARN , Garrapatas , Virus , Animales , Humanos , Bovinos , Ratones , República Popular Democrática de Corea , Filogenia , Mamíferos
5.
PLoS Genet ; 17(10): e1009832, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34673774

RESUMEN

The mammalian target of rapamycin complex 1 (mTORC1) senses multiple stimuli to regulate anabolic and catabolic processes. mTORC1 is typically hyperactivated in multiple human diseases such as cancer and type 2 diabetes. Extensive research has focused on signaling pathways that can activate mTORC1 such as growth factors and amino acids. However, less is known about signaling cues that can directly inhibit mTORC1 activity. Here, we identify A-kinase anchoring protein 13 (AKAP13) as an mTORC1 binding protein, and a crucial regulator of mTORC1 inhibition by G-protein coupled receptor (GPCR) signaling. GPCRs paired to Gαs proteins increase cyclic adenosine 3'5' monophosphate (cAMP) to activate protein kinase A (PKA). Mechanistically, AKAP13 acts as a scaffold for PKA and mTORC1, where PKA inhibits mTORC1 through the phosphorylation of Raptor on Ser 791. Importantly, AKAP13 mediates mTORC1-induced cell proliferation, cell size, and colony formation. AKAP13 expression correlates with mTORC1 activation and overall lung adenocarcinoma patient survival, as well as lung cancer tumor growth in vivo. Our study identifies AKAP13 as an important player in mTORC1 inhibition by GPCRs, and targeting this pathway may be beneficial for human diseases with hyperactivated mTORC1.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Células A549 , Animales , Línea Celular , Línea Celular Tumoral , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células HCT116 , Células HEK293 , Humanos , Ratones , Células PC-3 , Fosforilación/fisiología
6.
Emerg Infect Dis ; 29(6): 1254-1257, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37209692

RESUMEN

We isolated a new orthonairovirus from Dermacentor silvarum ticks near the China-North Korea border. Phylogenetic analysis showed 71.9%-73.0% nucleic acid identity to the recently discovered Songling orthonairovirus, which causes febrile illness in humans. We recommend enhanced surveillance for infection by this new virus among humans and livestock.


Asunto(s)
Dermacentor , Virus , Humanos , Animales , República Popular Democrática de Corea/epidemiología , Filogenia , China/epidemiología
7.
J Med Virol ; 95(5): e28782, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37212323

RESUMEN

Mainland China included Japanese encephalitis (JE) vaccine in the national immunization program in 2008 to control the JE epidemic. However, Gansu province in Western China experienced the largest JE outbreak since 1958 in 2018. We conducted a retrospective epidemiological study to explore the causes of this outbreak. We found that adults aged ≥20 years (especially those in rural areas) were the main JE cases in Gansu Province, with a significant increase in the JE incidence in older adults aged ≥60 years in 2017 and 2018. In addition, JE outbreaks in Gansu Province were mainly located in the southeastern region, while the temperature and precipitation in Gansu Province were gradually increasing in recent years, which made the JE epidemic areas in Gansu Province gradually spread to the western of Gansu Province. We also found that adults aged ≥20 years in Gansu Province had lower JE antibody positivity than children and infants, and the antibody positivity rate decreased with age. In the summer of 2017 and 2018, the density of mosquitoes (mainly the Culex tritaeniorhynchus) in Gansu Province was significantly higher than in other years, and the genotype of JEV was mainly Genotype-G1. Therefore, in the future JE control in Gansu Province, we need to strengthen JE vaccination for adults. Moreover, strengthening mosquito surveillance can provide early warning of JE outbreaks and the spread of epidemic areas in Gansu Province. At the same time, strengthening JE antibody surveillance is also necessary for JE control.


Asunto(s)
Culicidae , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Vacunas contra la Encefalitis Japonesa , Niño , Lactante , Animales , Humanos , Anciano , Encefalitis Japonesa/epidemiología , Encefalitis Japonesa/prevención & control , Virus de la Encefalitis Japonesa (Especie)/genética , Estudios Retrospectivos , Vacunación , Brotes de Enfermedades , China/epidemiología
8.
J Infect Dis ; 225(5): 912-923, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34543409

RESUMEN

BACKGROUND: The role of nasopharyngeal bacteria in respiratory syncytial virus (RSV) disease has been underestimated. We measured the frequency and burden of respiratory bacteria in the upper respiratory tract of infants with RSV infection over 7 respiratory seasons, and their impact on clinical outcomes. METHODS: Children <2 years old with mild (outpatients, n=115) or severe (inpatients, n=566) RSV infection, and matched healthy controls (n=161) were enrolled. Nasopharyngeal samples were obtained for RSV, Streptococcus pneumoniae, Staphylococcus aureus, Moraxella catarrhalis, and Haemophilus influenzae detection and quantitation by PCR. Multivariable models were constructed to identify variables predictive of severe disease. RESULTS: S. pneumoniae, H. influenzae, and M. catarrhalis, but not S. aureus, were detected more frequently in RSV-infected children (84%) than healthy controls (46%; P<.001). Detection of S. pneumoniae and/or H. influenzae was associated with fever, more frequent antibiotic treatment, worse radiologic findings, and higher neutrophil counts (P<.01). In adjusted analyses, S. pneumoniae/H. influenzae codetection was independentlyassociated with greater odds of hospitalization, higher disease severity scores, need for supplemental oxygen, and longer hospitalization. CONCLUSIONS: Nasopharyngeal codetection of S. pneumoniae and H. influenzae in infants with RSV infection is associated with increased disease severity.


Asunto(s)
Enfermedades Transmisibles , Infecciones por Virus Sincitial Respiratorio , Bacterias , Niño , Preescolar , Haemophilus influenzae , Humanos , Lactante , Moraxella catarrhalis , Nasofaringe/microbiología , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Virus Sincitiales Respiratorios , Streptococcus pneumoniae
9.
J Infect Dis ; 225(2): 208-213, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34618885

RESUMEN

The burden of coronavirus disease 2019 (COVID-19) in children represents a fraction of cases worldwide, yet a subset of those infected are at risk for severe disease. We measured plasma severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in a cohort of 103 children hospitalized with COVID-19 with diverse clinical manifestations. SARS-CoV-2 RNAemia was detected in 27 (26%) of these children, lasted for a median of 6 (interquartile range, 2-9) days, and was associated with higher rates of oxygen administration, admission to the intensive care unit, and longer hospitalization.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/aislamiento & purificación , Adolescente , COVID-19/epidemiología , Niño , Preescolar , Femenino , Hospitalización , Humanos , Lactante , Unidades de Cuidados Intensivos , Masculino , Nasofaringe/virología , ARN Viral/genética , SARS-CoV-2/genética , Índice de Severidad de la Enfermedad , Viremia/epidemiología
10.
Emerg Infect Dis ; 28(11): 2270-2280, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36285986

RESUMEN

Since the COVID-19 pandemic began, different SARS-CoV-2 variants have been identified and associated with higher transmissibility than the ancestral nonvariant strain. During January 1, 2021-January 15, 2022, we assessed differences in clinical and viral parameters in a convenience sample of COVID-19 outpatients and inpatients 0-21 years of age in Columbus, Ohio, USA, according to the infecting variant, identified using a mutation-specific reverse transcription PCR assay. Of the 676 patients in the study, 17.75% were infected with nonvariant strains, 18.49% with the Alpha variant, 41.72% with Delta, and 16.42% with Omicron. Rates of SARS-COV-2/viral co-infections were 15.66%-29.41% and were comparable across infecting variants. Inpatients with acute Delta and Omicron infections had lower SARS-CoV-2 cycle threshold values and more frequent fever and respiratory symptoms than those with nonvariant strain infections. In addition, SARS-COV-2/viral co-infections and the presence of underlying conditions were independently associated with worse clinical outcomes, irrespective of the infecting variant.


Asunto(s)
COVID-19 , Coinfección , Niño , Humanos , Adolescente , SARS-CoV-2/genética , Pandemias , Índice de Severidad de la Enfermedad
11.
Chemistry ; 28(69): e202202221, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36066483

RESUMEN

In recent years, intermetallic nanocrystals (IMNCs) have attracted extensive attention in the field of electrocatalysis. However, precise control over the size, shape, composition, structure, and exposed crystal facet of IMNCs seems to be a challenge to the traditional method of high-temperature annealing although these parameters have a significant effect on the electrocatalytic performance. Controllable synthesis of IMNCs by the wet chemistry method in the liquid phase shows great potential compared with the traditional high-temperature annealing method. In this Review, we attempt to summarize the preparation of IMNCs by the seed-mediated synthesis in the liquid phase, as well as their applications in electrocatalytic reduction reactions. Several representative examples are purposely selected for highlighting the huge potential of the seed-mediated synthesis approach in chemical synthesis. Specifically, we personally perceive the seed-mediated synthesis approach as a promising tool in the future for precise control over the size, shape, composition, structure, and exposed crystal facet of IMNCs.


Asunto(s)
Nanopartículas , Semillas
12.
Biomacromolecules ; 23(4): 1633-1642, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35352926

RESUMEN

The elastic tensors of chitin and chitosan allomorphs were calculated using density functional theory (DFT) with and without the dispersion correction and compared with experimental values. The longitudinal Young's moduli were 114.9 or 126.9 GPa for α-chitin depending on the hydrogen bond pattern: 129.0 GPa for ß-chitin and 191.5 GPa for chitosan. Furthermore, the moduli were found to vary between 17.0 and 52.8 GPa in the transverse directions and between 2.2 and 15.2 GPa in shear. Switching off the dispersion correction led to a decrease in modulus by up to 63%, depending on the direction. The transverse Young's moduli of α-chitin strongly depended on the hydroxylmethyl group conformation coupled with the dispersion correction, suggesting a synergy between hydrogen bonding and dispersion interactions. The calculated longitudinal Young's moduli were, in general, higher than experimental values obtained in static conditions, and the Poisson's ratios were lower than experimental values obtained in static conditions.


Asunto(s)
Quitina/química , Quitosano , Anisotropía , Módulo de Elasticidad , Enlace de Hidrógeno
13.
J Allergy Clin Immunol ; 147(2): 532-544.e1, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33007327

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that emerged recently and has created a global pandemic. Symptomatic SARS-CoV-2 infection, termed coronavirus disease 2019 (COVID-19), has been associated with a host of symptoms affecting numerous organ systems, including the lungs, cardiovascular system, kidney, central nervous system, gastrointestinal tract, and skin, among others. OBJECTIVE: Although several risk factors have been identified as related to complications from and severity of COVID-19, much about the virus remains unknown. The host immune response appears to affect the outcome of disease. It is not surprising that patients with intrinsic or secondary immune compromise might be particularly susceptible to complications from SARS-CoV-2 infection. Pathogenic loss-of-function or gain-of-function heterozygous variants in nuclear factor-κB2 have been reported to be associated with either a combined immunodeficiency or common variable immunodeficiency phenotype. METHODS: We evaluated the functional consequence and immunologic phenotype of a novel NFKB2 loss of function variant in a 17-year-old male patient and describe the clinical management of SARS-CoV-2 infection in this context. RESULTS: This patient required a 2-week hospitalization for SARS-CoV-2 infection, including 7 days of mechanical ventilation. We used biologic therapies to avert potentially fatal acute respiratory distress syndrome and treat hyperinflammatory responses. The patient had an immunologic phenotype of B-cell dysregulation with decreased switched memory B cells. Despite the underlying immune dysfunction, he recovered from the infection with intense management. CONCLUSIONS: This clinical case exemplifies some of the practical challenges in management of patients with SARS-CoV-2 infection, especially in the context of underlying immune dysregulation.


Asunto(s)
COVID-19/genética , Subunidad p52 de NF-kappa B/genética , SARS-CoV-2 , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/uso terapéutico , Adolescente , Alanina/análogos & derivados , Alanina/uso terapéutico , Anticuerpos Antivirales/sangre , Antivirales/uso terapéutico , Linfocitos B/inmunología , COVID-19/diagnóstico , COVID-19/inmunología , COVID-19/terapia , Hospitalización , Humanos , Interleucina-6/sangre , Masculino , Respiración Artificial , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad
14.
J Biol Chem ; 295(10): 2890-2899, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32019866

RESUMEN

Nutrient sensing by cells is crucial, and when this sensing mechanism is disturbed, human disease can occur. mTOR complex 1 (mTORC1) senses amino acids to control cell growth, metabolism, and autophagy. Leucine, arginine, and methionine signal to mTORC1 through the well-characterized Rag GTPase signaling pathway. In contrast, glutamine activates mTORC1 through a Rag GTPase-independent mechanism that requires ADP-ribosylation factor 1 (Arf1). Here, using several biochemical and genetic approaches, we show that eight amino acids filter through the Rag GTPase pathway. Like glutamine, asparagine signals to mTORC1 through Arf1 in the absence of the Rag GTPases. Both the Rag-dependent and Rag-independent pathways required the lysosome and lysosomal function for mTORC1 activation. Our results show that mTORC1 is differentially regulated by amino acids through two distinct pathways.


Asunto(s)
Asparagina/metabolismo , Glutamina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Factor 1 de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Aminoácidos/química , Aminoácidos/farmacología , Animales , Asparagina/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Medios de Cultivo/química , Medios de Cultivo/farmacología , Glutamina/química , Células HEK293 , Humanos , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/química , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Fosforilación , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología
15.
Emerg Infect Dis ; 27(6): 1588-1597, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34013867

RESUMEN

Emergence of macrolide-resistant Mycoplasma pneumoniae (MRMp) challenges empiric macrolide therapy. Our goal was to determine MRMp rates and define characteristics of children infected with macrolide-sensitive M. pneumoniae (MSMp) versus MRMp in Ohio, USA. We cultured PCR-positive M. pneumoniae specimens and sequenced M. pneumoniae-positive cultures to detect macrolide resistance mutations. We reviewed medical records to compare characteristics of both groups. We identified 14 (2.8%) MRMp and 485 (97.2%) MSMp samples. Patients in these groups had similar demographics and clinical characteristics, but patients with MRMp had longer hospitalizations, were more likely to have received previous macrolides, and were more likely to have switched to alternative antimicrobial drugs. MRMp-infected patients also had ≈5-fold greater odds of pediatric intensive care unit admission. Rates of MRMp infections in children in central Ohio are low, but clinicians should remain aware of the risk for severe illness caused by these pathogens.


Asunto(s)
Neumonía por Mycoplasma , Antibacterianos/farmacología , Niño , Farmacorresistencia Bacteriana , Humanos , Macrólidos/farmacología , Mycoplasma pneumoniae , Ohio , Neumonía por Mycoplasma/tratamiento farmacológico
16.
J Clin Microbiol ; 59(8): e0092621, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34011523

RESUMEN

The emergence of more transmissible and/or more virulent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) has triggered intensive genomic surveillance, which is costly and difficult to sustain operationally over the long term. To address this problem, we developed a set of four multiplex mutation-specific PCR-based assays with same-day reporting that can detect five VOC and three variants of interest (VOI), as defined in the March 2021 guidelines from the U.S. Centers for Disease Control and Prevention (https://www.cdc.gov/coronavirus/2019-ncov/). The screening results were compared to the whole-genome sequencing (WGS) and showed 100% concordance for strain typing for B.1.1.7 (n = 25) and P.1 (n = 5) variants using spike (S) mutation S-N501Y, S-E484K, and S-H69-V70del assays. The S-L450R assay, designed to detect the B.1.427/429 VOC, also identified multiple isolates of a newly emerging multiply mutated B.1.526.1 variant that is now rapidly increasing in the eastern United States. PCR approaches can be easily adopted in clinical laboratories, providing rapid screening methods to allow early detection of newly emergent variants and to efficiently triage cases for full genomic sequencing.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Reacción en Cadena de la Polimerasa Multiplex , Mutación , Glicoproteína de la Espiga del Coronavirus/genética
17.
J Pediatr ; 229: 216-222.e2, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33045237

RESUMEN

OBJECTIVES: To test our hypothesis that routine year-round testing of specimens from multiple body sites and genotyping of detected virus would describe seasonal changes, increase diagnostic yield, and provide a better definition of clinical manifestations of human parechovirus (PeV-A) infections in young febrile infants. STUDY DESIGN: PeV-A reverse-transcriptase polymerase chain reaction (RT-PCR) analysis was incorporated in routine evaluation of infants aged ≤60 days hospitalized at Nationwide Children's Hospital for fever and/or suspected sepsis-like syndrome beginning in July 2013. We reviewed electronic medical records of infants who tested positive for PeV-A between July 2013 and September 2016. Genotyping was performed with specific type 3 RT-PCR and sequencing. RESULTS: Of 1475 infants evaluated, 130 (9%) tested positive for PeV-A in 1 or more sites: 100 (77%) in blood, 84 (65%) in a nonsterile site, and 53 (41%) in cerebrospinal fluid (CSF). Five infants (4%) were CSF-only positive, 31 (24%) were blood-only positive, and 20 (15%) were nonsterile site-only positive. PeV-A3 was the most common type (85%) and the only type detected in CSF. Although the majority (79%) of infections were diagnosed between July and December, PeV-A was detected year-round. The median age at detection was 29 days. Fever (96%), fussiness (75%), and lymphopenia (56%) were common. Among infants with PeV-A-positive CSF, 77% had no CSF pleocytosis. The median duration of hospitalization was 41 hours. Four infants had bacterial coinfections diagnosed within 24 hours of admission; 40 infants had viral coinfections. CONCLUSIONS: Although most frequent in summer and fall, PeV-A infections were encountered in every calendar month within the 3-year period of study. More than one-half of patients had PeV-A detected at more than 1 body site. Coinfections were common. PeV-A3 was the most common type identified and the only type detected in the CSF.


Asunto(s)
Infecciones por Picornaviridae/diagnóstico , Líquido Cefalorraquídeo/virología , Pruebas Diagnósticas de Rutina , Femenino , Fiebre/virología , Técnicas de Genotipaje , Humanos , Lactante , Recién Nacido , Masculino , Parechovirus/clasificación , Parechovirus/aislamiento & purificación , Infecciones por Picornaviridae/sangre , Infecciones por Picornaviridae/complicaciones , Reacción en Cadena en Tiempo Real de la Polimerasa , Estudios Retrospectivos , Estaciones del Año
18.
Cancer Cell Int ; 21(1): 291, 2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34090418

RESUMEN

BACKGROUND: Pancreatic cancer (PC) is a highly fatal and aggressive disease with its incidence and mortality quite discouraging. An effective prediction model is urgently needed for the accurate assessment of patients' prognosis to assist clinical decision-making. METHODS: Gene expression data and clinicopathological data of the samples were acquired from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases. Differential expressed genes (DEGs) analysis, univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO) regression analysis, random forest screening and multivariate Cox regression analysis were applied to construct the risk signature. The effectiveness and independence of the model were validated by time-dependent receiver operating characteristic (ROC) curve, Kaplan-Meier (KM) survival analysis and survival point graph in training set, test set, TCGA entire set and GSE57495 set. The validity of the core gene was verified by immunohistochemistry and our own independent cohort. Meanwhile, functional enrichment analysis of DEGs between the high and low risk groups revealed the potential biological pathways. Finally, CMap database and drug sensitivity assay were utilized to identify potential small molecular drugs as the risk model-related treatments for PC patients. RESULTS: Four histone modification-related genes were identified to establish the risk signature, including CBX8, CENPT, DPY30 and PADI1. The predictive performance of risk signature was validated in training set, test set, TCGA entire set and GSE57495 set, with the areas under ROC curve (AUCs) for 3-year survival were 0.773, 0.729, 0.775 and 0.770 respectively. Furthermore, KM survival analysis, univariate and multivariate Cox regression analysis proved it as an independent prognostic factor. Mechanically, functional enrichment analysis showed that the poor prognosis of high-risk population was related to the metabolic disorders caused by inadequate insulin secretion, which was fueled by neuroendocrine aberration. Lastly, a cluster of small molecule drugs were identified with significant potentiality in treating PC patients. CONCLUSIONS: Based on a histone modification-related gene signature, our model can serve as a reliable prognosis assessment tool and help to optimize the treatment for PC patients. Meanwhile, a cluster of small molecule drugs were also identified with significant potentiality in treating PC patients.

19.
BMC Infect Dis ; 21(1): 1172, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34809606

RESUMEN

BACKGROUND: Although a vaccination campaign has been conducted since 2004, Japanese encephalitis (JE) is still a public health problem in Guizhou, one of the provinces with the highest incidence of JE in China. The aim of this study was to understand the spatiotemporal distribution of JE and its relationship with environmental factors in Guizhou Province in the post-vaccination era, 2004-2016. METHODS: We collected data on human JE cases in Guizhou Province from 2004 to 2016 from the national infectious disease reporting system. A Poisson regression model was used to analyze the relationship between JE occurrence and environmental factors amongst counties. RESULTS: Our results showed that the incidence and mortality of JE decreased after the initiation of vaccination. JE cases were mainly concentrated in preschool and school-age children and the number of cases in children over age 15 years was significantly decreased compared with the previous 10 years; the seasonality of JE before and after the use of vaccines was unchanged. JE incidence was positively associated with cultivated land and negatively associated with gross domestic product (GDP) per capita, vegetation coverage, and developed land. In areas with cultivated land coverage < 25%, vegetation coverage > 55%, and urban area coverage > 25%, the JE risk was lower. The highest JE incidence was among mid-level GDP areas and in moderately urbanized areas. CONCLUSIONS: This study assessed the relationship between incidence of JE and environmental factors in Guizhou Province. Our results highlight that the highest risk of JE transmission in the post-vaccination era is in mid-level developed areas.


Asunto(s)
Encefalitis Japonesa , Vacunas contra la Encefalitis Japonesa , Adolescente , Niño , Preescolar , China/epidemiología , Encefalitis Japonesa/epidemiología , Encefalitis Japonesa/prevención & control , Humanos , Programas de Inmunización , Vacunación
20.
Cell Mol Life Sci ; 77(2): 305-321, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31432232

RESUMEN

Pancreatic ductal adenocarcinoma is prone to distant metastasis and is expected to become the second leading cause of cancer-related death. In an extremely nutrient-deficient and hypoxic environment resulting from uncontrolled growth, vascular disturbances and desmoplastic reactions, pancreatic cancer cells utilize "metabolic reprogramming" to satisfy their energy demand and support malignant behaviors such as metastasis. Notably, pancreatic cancer cells show extensive enhancement of glycolysis, including glycolytic enzyme overexpression and increased lactate production, and this is caused by mitochondrial dysfunction, cancer driver genes, specific transcription factors, a hypoxic tumor microenvironment and stromal cells, such as cancer-associated fibroblasts and tumor-associated macrophages. The metabolic switch from oxidative phosphorylation to glycolysis in pancreatic cancer cells regulates the invasion-metastasis cascade by promoting epithelial-mesenchymal transition, tumor angiogenesis and the metastatic colonization of distant organs. In addition to aerobic glycolysis, oxidative phosphorylation also plays a critical role in pancreatic cancer metastasis in ways that remain unclear. In this review, we expound on the intracellular and extracellular causes of the enhancement of glycolysis in pancreatic cancer and the strong association between glycolysis and cancer metastasis, which we expect will yield new therapeutic approaches targeting cancer metabolism.


Asunto(s)
Glucólisis/fisiología , Metástasis de la Neoplasia/patología , Neoplasias Pancreáticas/patología , Animales , Transición Epitelial-Mesenquimal/fisiología , Humanos , Neovascularización Patológica , Microambiente Tumoral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA