Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(1): e2208541120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574661

RESUMEN

Impaired endothelial cell (EC)-mediated angiogenesis contributes to critical limb ischemia in diabetic patients. The sonic hedgehog (SHH) pathway participates in angiogenesis but is repressed in hyperglycemia by obscure mechanisms. We investigated the orphan G protein-coupled receptor GPR39 on SHH pathway activation in ECs and ischemia-induced angiogenesis in animals with chronic hyperglycemia. Human aortic ECs from healthy and type 2 diabetic (T2D) donors were cultured in vitro. GPR39 mRNA expression was significantly elevated in T2D. The EC proliferation, migration, and tube formation were attenuated by adenovirus-mediated GPR39 overexpression (Ad-GPR39) or GPR39 agonist TC-G-1008 in vitro. The production of proangiogenic factors was reduced by Ad-GPR39. Conversely, human ECs transfected with GPR39 siRNA or the mouse aortic ECs isolated from GPR39 global knockout (GPR39KO) mice displayed enhanced migration and proliferation compared with their respective controls. GPR39 suppressed the basal and ligand-dependent activation of the SHH effector GLI1, leading to attenuated EC migration. Coimmunoprecipitation revealed that the GPR39 direct binding of the suppressor of fused (SUFU), the SHH pathway endogenous inhibitor, may achieve this. Furthermore, in ECs with GPR39 knockdown, the robust GLI1 activation and EC migration were abolished by SUFU overexpression. In a chronic diabetic model of diet-induced obesity (DIO) and low-dose streptozotocin (STZ)-induced hyperglycemia, the GPR39KO mice demonstrated a faster pace of revascularization from hind limb ischemia and lower incidence of tissue necrosis than GPR39 wild-type (GPR39WT) counterparts. These findings have provided a conceptual framework for developing therapeutic tools that ablate or inhibit GPR39 for ischemic tissue repair under metabolic stress.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Humanos , Ratones , Animales , Proteínas Hedgehog/metabolismo , Proteína con Dedos de Zinc GLI1 , Células Cultivadas , Neovascularización Fisiológica/fisiología , Células Endoteliales/metabolismo , Neovascularización Patológica , Isquemia , Receptores Acoplados a Proteínas G/genética , Hiperglucemia/genética , Diabetes Mellitus Tipo 2/genética
2.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279212

RESUMEN

Animal models of metabolic disorders are essential to studying pathogenic mechanisms and developing therapies for diabetes, but the induction protocols vary, and sexual dimorphism often exists. In a chronic diabetic model of diet-induced obesity (DIO) and low-dose streptozotocin (STZ)-induced hyperglycemia, blood glucose and lipid profiles were measured. The high-fat (HF) diet damaged insulin sensitivity and increased triglycerides, total cholesterol, LDL-cholesterol, HDL-cholesterol, and liver lipid deposition. STZ increased blood glucose and liver fibrosis with less effects on blood lipids or liver lipid deposition. The combination of DIO and STZ treatments led to significant liver lipid deposition and fibrosis. Female mice showed delayed body weight gain on HF diet and resisted STZ-induced hyperglycemia. However, once they developed DIO, which occurs around 26 weeks of HF diet, the female mice were prone to STZ-induced hyperglycemia. In hindlimb ischemia, male mice in the DIO-STZ group showed significantly worse neovascularization compared with DIO or STZ groups. The DIO-STZ females showed significantly worse recovery than the DIO-STZ males. Our observations suggest that DIO-STZ is a plausible model for studying metabolic and cardiovascular disorders in obesity and diabetes. Moreover, the findings in female animals stress the need to assess sexual dimorphism and investigate the underlying mechanisms that contribute to the worse vasculopathy manifestations in females in metabolic models.


Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Masculino , Femenino , Ratones , Animales , Glucemia/metabolismo , Insulina/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Obesidad/complicaciones , Modelos Animales de Enfermedad , Lípidos , Hiperglucemia/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Estrés Fisiológico
3.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3462-3472, 2024 Jul.
Artículo en Zh | MEDLINE | ID: mdl-39041118

RESUMEN

To comprehensively reveal and utilize the plant resources of Lycium in China, this study determined and compared the content of monosaccharides, polysaccharides, proteins, carotenoids, organic acids, and phenols in the dried fruits of 8 different Lycium species. Furthermore, the traits including the hundred-fruit weight, shape index, and the ratio of seed to fruit were measured, and the correlations between the content of chemical compounds and fruit traits were assessed. The results showed that L. truncatum, L. barbarum var. auranticarpum, and L. dasystemum var. rubricaulium were the species with high content of monosaccharides. L. barbarum and L. barbarum var. auranticarpum were the species with high content of total polysaccharides, and L. barbarum was the species with high content of carotenoids. L. yunnanense and L. chinense var. potaninii had high content of soluble proteins. L. truncatum, L. dasystemum, and L. barbarum showed high content of organic acids and phenols. L. barbarum and L. barbarum var. auranticarpum demonstrated high fruit weight, while L. yunnanense and L. chinense had high ratios of seed to fruit. The multivariate statistical analysis indicated that polysaccharides, carotenoids, hundred-fruit weight, ratio of seed to fruit, scopolamine, fructose, 5-O-feruloylquinic acid, kaempferol-3-O-rutinoside, scopoletin, cryptochlorogenic acid, and caffeic acid were the main differential compounds in the fruits among different species of Lycium. Moreover, the results of correlation ananysis showed strong correlations between fruit traits and compound content. Specifically, the hundred-fruit weight had positive correlations with the content of total polysaccharides and scopola-mine. The ratio of seed to fruit was negatively correlated with the content of rutin, kaempferol-3-O-rutinoside, fructose, and glucose and positively correlated with the content of succinic acid, soluble proteins, and zeaxanthin. The results implied that chemical compounds presented different distribution patterns in the fruits of 8 Lycium species. This study provides a basis for the comprehensive development and utilization, targeted breeding, and value-added application of Lycium plants.


Asunto(s)
Carotenoides , Frutas , Lycium , Lycium/química , Lycium/crecimiento & desarrollo , Frutas/química , Frutas/crecimiento & desarrollo , Carotenoides/análisis , Fenoles/análisis , Polisacáridos/análisis , Polisacáridos/química , Monosacáridos/análisis , China , Proteínas de Plantas/análisis
4.
FASEB J ; 35(7): e21645, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34105824

RESUMEN

Peripheral arterial disease (PAD) is one of the major complications of diabetes due to an impairment in angiogenesis. Since there is currently no drug with satisfactory efficacy to enhance blood vessel formation, discovering therapies to improve angiogenesis is critical. An imidazolinone metabolite of the metformin-methylglyoxal scavenging reaction, (E)-1,1-dimethyl-2-(5-methyl-4-oxo-4,5-dihydro-1H-imidazol-2-yl) guanidine (IMZ), was recently characterized and identified in the urine of type-2 diabetic patients. Here, we report the pro-angiogenesis effect of IMZ (increased aortic sprouting, cell migration, network formation, and upregulated multiple pro-angiogenic factors) in human umbilical vein endothelial cells. Using genetic and pharmacological approaches, we showed that IMZ augmented angiogenesis by activating the endothelial nitric oxide synthase (eNOS)/hypoxia-inducible factor-1 alpha (HIF-1α) pathway. Furthermore, IMZ significantly promoted capillary density in the in vivo Matrigel plug angiogenesis model. Finally, the role of IMZ in post-ischemic angiogenesis was examined in a chronic hyperglycemia mouse model subjected to hind limb ischemia. We observed improved blood perfusion, increased capillary density, and reduced tissue necrosis in mice receiving IMZ compared to control mice. Our data demonstrate the pro-angiogenic effects of IMZ, its underlying mechanism, and provides a structural basis for the development of potential pro-angiogenic agents for the treatment of PAD.


Asunto(s)
Miembro Posterior/fisiopatología , Hiperglucemia/complicaciones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isquemia/complicaciones , Metformina/metabolismo , Neovascularización Patológica/patología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Animales , Hipoglucemiantes/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Imidazolinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Piruvaldehído/metabolismo
6.
Am J Physiol Cell Physiol ; 317(1): C68-C81, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30995106

RESUMEN

Endothelial dysfunction is a key risk factor in diabetes-related multiorgan damage. Methylglyoxal (MGO), a highly reactive dicarbonyl generated primarily as a by-product of glycolysis, is increased in both type 1 and type 2 diabetic patients. MGO can rapidly bind with proteins, nucleic acids, and lipids, resulting in structural and functional changes. MGO can also form advanced glycation end products (AGEs). How MGO causes endothelial cell dysfunction, however, is not clear. Human aortic endothelial cells (HAECs) from healthy (H-HAECs) and type 2 diabetic (D-HAECs) donors were cultured in endothelial growth medium (EGM-2). D-HAECs demonstrated impaired network formation (on Matrigel) and proliferation (MTT assay), as well as increased apoptosis (caspase-3/7 activity and TUNEL staining), compared with H-HAECs. High glucose (25 mM) or AGEs (200 ng/ml) did not induce such immediate, detrimental effects as MGO (10 µM). H-HAECs were treated with MGO (10 µM) for 24 h with or without the ATP-sensitive potassium (KATP) channel antagonist glibenclamide (1 µM). MGO significantly impaired H-HAEC network formation and proliferation and induced cell apoptosis, which was reversed by glibenclamide. Furthermore, siRNA against the KATP channel protein Kir6.1 significantly inhibited endothelial cell function at basal status but rescued impaired endothelial cell function upon MGO exposure. Meanwhile, activation of MAPK pathways p38 kinase, c-Jun NH2-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) (determined by Western blot analyses of their phosphorylated forms, p-JNK, p-p38, and p-ERK) in D-HAECs were significantly enhanced compared with those in H-HAECs. MGO exposure enhanced the activation of all three MAPK pathways in H-HAECs, whereas glibenclamide reversed the activation of p-stress-activated protein kinase/JNK induced by MGO. Glyoxalase-1 (GLO1) is the endogenous MGO-detoxifying enzyme. In healthy mice that received an inhibitor of GLO1, MGO deposition in aortic wall was enhanced and endothelial cell sprouting from isolated aortic segment was significantly inhibited. Our data suggest that MGO triggers endothelial cell dysfunction by activating the JNK/p38 MAPK pathway. This effect arises partly through activation of KATP channels. By understanding how MGO induces endothelial dysfunction, our study may provide useful information for developing MGO-targeted interventions to treat vascular disorders in diabetes.


Asunto(s)
Aorta/efectos de los fármacos , Diabetes Mellitus Tipo 2/enzimología , Canales KATP/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neovascularización Fisiológica , Piruvaldehído/toxicidad , Animales , Aorta/enzimología , Aorta/patología , Apoptosis/efectos de los fármacos , Estudios de Casos y Controles , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus Tipo 2/patología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucosa/toxicidad , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Canales KATP/genética , Lactoilglutatión Liasa/metabolismo , Masculino , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Fosforilación , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Dig Dis Sci ; 63(11): 2910-2922, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30043283

RESUMEN

BACKGROUND: G protein-coupled receptor 35 (GPR35) is an orphan receptor and is vastly expressed in immune cells and gastrointestinal cells, suggesting the potential physiological importance of GPR35 in these cells. Here, we tested the hypothesis that the lack of GPR35 expression in the colon mucosa exacerbates the severity of dextran sulfate sodium (DSS)-induced experimental colitis in mice. METHODS: Colitis was induced in GPR35 wild-type (GPR35+/+) and GPR35 knockout (GPR35-/-) mice through the administration of DSS in drinking water for 5 days followed by regular facility water for 1 day. Induction of colitis was evaluated by measuring relative body weight loss, clinical illness scores, and morphological changes in the colon. Abolition of Gpr35 gene expression in the colon mucosa of GPR35-/- mice was confirmed by quantitative real-time PCR (qPCR). Gene expressions of inflammatory and tissue remodeling cytokines were detected by qPCR. Human colorectal epithelial Caco cells were transfected with siRNA against GPR35 before treated with 1% DSS in vitro. Protein expressions were measured using Western blot. RESULTS: GPR35-/- mice receiving DSS showed a significantly worsened colitis disease with profound loss of body weight and a considerable amount of severe clinical illness compared to GPR35+/+ mice that received DSS. The histology of colon sections from GPR35-/- mice showed extensive pathological changes including submucosal edema, diffuse ulcerations, and evidence of complete loss of crypts compared to wild-type mice. The mean histopathological score was significantly higher in GPR35-/- mice as compared to GPR35+/+ mice. The qPCR data revealed significant expression of pro-inflammatory and tissue remodeling cytokines in GPR35-/- colon mucosa, including IL-1ß, CXCL1, CXCL2, CCL2, HMGB1, TGFß1, TGFß3, MMP1/9/12. The protein expressions of Zonula occludens-1, E-cadherin, Claudin1 were decreased upon knocking down GPR35 with or without 1% DSS treatment. CONCLUSIONS: Our experimental data suggest that lack of GPR35 resulted in worsened disease outcome in DSS-induced experimental colitis, indicating that GPR35 could play a crucial role in protecting from colonic inflammation and serve as a therapeutic target.


Asunto(s)
Colitis/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Células CACO-2 , Colitis/inducido químicamente , Colitis/inmunología , Colitis/patología , Colon/patología , Sulfato de Dextran , Humanos , Mucosa Intestinal/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila , Úlcera/etiología , Regulación hacia Arriba , Pérdida de Peso
8.
Am J Physiol Endocrinol Metab ; 313(4): E391-E401, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28698281

RESUMEN

Bone marrow-derived progenitor cells (BMPCs) are potential candidates for autologous cell therapy in tissue repair and regeneration because of their high angiogenic potential. However, increased progenitor cell apoptosis in diabetes directly limits their success in the clinic. MicroRNAs are endogenous noncoding RNAs that regulate gene expression at the posttranscriptional level, but their roles in BMPC-mediated angiogenesis are incompletely understood. In the present study, we tested the hypothesis that the proangiogenic miR-27b inhibits BMPC apoptosis in Type 2 diabetes. Bone marrow-derived EPCs from adult male Type 2 diabetic db/db mice and their normal littermates db/+ mice were used. MiR-27b expression (real-time PCR) in EPCs was decreased after 24 h of exposure to methylglyoxal (MGO) or oxidized low-density lipoprotein but not high glucose, advanced glycation end products, the reactive oxygen species generator LY83583, or H2O2 The increase in BMPC apoptosis in the diabetic mice was rescued following transfection with a miR-27b mimic, and the increased apoptosis induced by MGO was also rescued by the miR-27b mimic. p53 protein expression and the Bax/Bcl-2 ratio in EPCs (Western blot analyses) were significantly higher in db/db mice, both of which were suppressed by miR-27b. Furthermore, mitochondrial respiration, as measured by oxygen consumption rate, was enhanced by miR-27b in diabetic BMPCs, with concomitant decrease of mitochondrial Bax/Bcl-2 ratio. The 3' UTR binding assays revealed that both Bax, and its activator RUNX1, were direct targets of miR-27b, suggesting that miR-27b inhibits Bax expression in both direct and indirect manners. miR-27b prevents EPC apoptosis in Type 2 diabetic mice, at least in part, by suppressing p53 and the Bax/Bcl-2 ratio. These findings may provide a mechanistic basis for rescuing BMPC dysfunction in diabetes for successful autologous cell therapy.


Asunto(s)
Apoptosis/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Progenitoras Endoteliales/metabolismo , MicroARNs/genética , Mitocondrias/metabolismo , Aminoquinolinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Estudios de Casos y Controles , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Productos Finales de Glicación Avanzada/farmacología , Peróxido de Hidrógeno/farmacología , Lipoproteínas LDL/farmacología , Masculino , Ratones , MicroARNs/efectos de los fármacos , MicroARNs/metabolismo , Mitocondrias/efectos de los fármacos , Oxidantes/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Piruvaldehído/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 34(1): 99-109, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24177325

RESUMEN

OBJECTIVE: Vascular precursor cells with angiogenic potentials are important for tissue repair, which is impaired in diabetes mellitus. MicroRNAs are recently discovered key regulators of gene expression, but their role in vascular precursor cell-mediated angiogenesis in diabetes mellitus is unknown. We tested the hypothesis that the microRNA miR-27b rescues impaired bone marrow-derived angiogenic cell (BMAC) function in vitro and in vivo in type 2 diabetic mice. APPROACH AND RESULTS: BMACs from adult male type 2 diabetic db/db and from normal littermate db/+ mice were used. miR-27b expression was decreased in db/db BMACs. miR-27b mimic improved db/db BMAC function, including proliferation, adhesion, tube formation, and delayed apoptosis, but it did not affect migration. Elevated thrombospondin-1 (TSP-1) protein in db/db BMACs was suppressed on miR-27b mimic transfection. Inhibition of miR-27b in db/+ BMACs reduced angiogenesis, which was reversed by TSP-1 small interfering RNA (siRNA). miR-27b suppressed the pro-oxidant protein p66(shc) and mitochondrial oxidative stress, contributing to its protection of BMAC function. miR-27b also suppressed semaphorin 6A to improve BMAC function in diabetes mellitus. Luciferase binding assay suggested that miR-27b directly targeted TSP-1, TSP-2, p66(shc), and semaphorin 6A. miR-27b improved topical cell therapy of diabetic BMACs on diabetic skin wound closure, with a concomitant augmentation of wound perfusion and capillary formation. Normal BMAC therapy with miR-27b inhibition demonstrated reduced efficacy in wound closure, perfusion, and capillary formation. Local miR-27b delivery partly improved wound healing in diabetic mice. CONCLUSIONS: miR-27b rescues impaired BMAC angiogenesis via TSP-1 suppression, semaphorin 6A expression, and p66shc-dependent mitochondrial oxidative stress and improves BMAC therapy in wound healing in type 2 diabetic mice.


Asunto(s)
Células de la Médula Ósea/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , MicroARNs/metabolismo , Neovascularización Fisiológica , Células Madre/metabolismo , Cicatrización de Heridas , Animales , Células de la Médula Ósea/patología , Antígenos CD36/deficiencia , Antígenos CD36/genética , Antígeno CD47/genética , Antígeno CD47/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/fisiopatología , Diabetes Mellitus Tipo 2/terapia , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/antagonistas & inhibidores , MicroARNs/sangre , MicroARNs/genética , Persona de Mediana Edad , Mitocondrias/metabolismo , Oligorribonucleótidos/farmacología , Estrés Oxidativo , Interferencia de ARN , Semaforinas/genética , Semaforinas/metabolismo , Proteínas Adaptadoras de la Señalización Shc/genética , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Transducción de Señal , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Células Madre/patología , Trombospondina 1/genética , Trombospondina 1/metabolismo , Trombospondinas/genética , Trombospondinas/metabolismo , Factores de Tiempo , Transfección
10.
Arterioscler Thromb Vasc Biol ; 33(8): 1920-7, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23723366

RESUMEN

OBJECTIVE: Circulating angiogenic cells play an essential role in angiogenesis but are dysfunctional in diabetes mellitus characterized by excessive oxidative stress. We hypothesize that oxidative stress-mediated upregulation of thrombospondin-2 (TSP-2), a potent antiangiogenic protein, contributes to diabetic bone marrow-derived angiogenic cell (BMAC) dysfunction. APPROACH AND RESULTS: BMACs were isolated from adult male type 2 diabetic db/db mice and control db/+ (C57BLKS/J) mice. In Matrigel tube formation assay, angiogenic function was impaired in diabetic BMACs, accompanied by increased oxidative stress and nicotinamide adenine dinucleotide phosphate oxidase activity. BMAC angiogenic function was restored by overexpression of dominant negative Rac1 or by overexpression of manganese superoxide dismutase. TSP-2 mRNA and protein were both significantly upregulated in diabetic BMACs, mediated by increased oxidative stress as shown by a decrease in TSP-2 level after overexpression of dominant negative Rac1 or manganese superoxide dismutase. Silencing TSP-2 by its small interfering RNA in diabetic BMACs improved BMAC function in tube formation, adhesion, and migration assays. Notably, the upregulation of TSP-2 was also found in BMACs from streptozotocin-induced type 1 diabetic mice, and normal BMACs with high glucose treatment. let-7f, a microRNA which has been related to endothelial angiogenic function, is found to play key role in TSP-2 increase, but let-7f did not directly interact with TSP-2 mRNA. CONCLUSIONS: The upregulation of TSP-2 mediated by increased oxidative stress contributes to angiogenesis dysfunction in diabetic BMACs.


Asunto(s)
Células de la Médula Ósea/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Angiopatías Diabéticas/metabolismo , Neovascularización Patológica/fisiopatología , Estrés Oxidativo/fisiología , Trombospondinas/metabolismo , Animales , Células de la Médula Ósea/citología , Células Cultivadas , Diabetes Mellitus Tipo 2/patología , Angiopatías Diabéticas/patología , Angiopatías Diabéticas/fisiopatología , Hiperglucemia/metabolismo , Hiperglucemia/patología , Hiperglucemia/fisiopatología , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , MicroARNs/genética , MicroARNs/fisiología , NADPH Oxidasa 2 , NADPH Oxidasas/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neuropéptidos/genética , Neuropéptidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/fisiología , ARN Interferente Pequeño/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Trombospondinas/genética , Regulación hacia Arriba/fisiología , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1
11.
Am J Physiol Endocrinol Metab ; 305(12): E1464-72, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24148348

RESUMEN

Refractory wounds in diabetic patients present a significant clinical problem. Sonic hedgehog (SHH), a morphogenic protein central to wound repair, is deficient in diabetes. Regulation of SHH in wound healing is poorly understood. We hypothesize that thrombospondin-1 (TSP-1), through its receptor CD36, contributes to the SHH signaling defect in bone marrow-derived angiogenic cells (BMACs) in type 1 diabetic mice. Isolated BMACs from TSP-1-knockout mice demonstrated improved tube formation, migration, and adhesion in parallel with active SHH signaling. BMACs from STZ-induced type 1 diabetic mice showed significantly impaired Matrigel tube formation (n = 5; P < 0.05 vs. control), which was rescued by TSP-1 depletion (n = 5; P < 0.05 STZ-TSP-1(-/-) vs. STZ-WT) or exogenous SHH (20 mg/l, 24 h, n = 4; P < 0.05 vs. STZ-control). The expression of CD36 was elevated in BMACs from STZ mice (n = 4; P < 0.05). SHH signaling was significantly higher in BMACs from TSP-1(-/-) mice and TSP-1 receptor CD36-knockout mice (n = 6; P < 0.05 vs. WT) but not CD47-knockout mice (n = 3; P > 0.05 vs. WT). The impairment of recombinant human TSP-1 (2.2 nM, 24 h) on BMAC Matrigel tube formation was delayed significantly by CD36 deletion (n = 5; P < 0.05). CD36(-/-) BMACs demonstrated better tube formation under both normal and diabetic conditions with active SHH signaling (n = 4; P < 0.05 vs. WT BMACs). In conclusion, The TSP-1/CD36 pathway contributes to the SHH signaling defect, resulting in BMAC dysfunction in type 1 diabetic mice.


Asunto(s)
Células de la Médula Ósea/fisiología , Antígenos CD36/fisiología , Diabetes Mellitus Tipo 1/fisiopatología , Células Endoteliales/fisiología , Proteínas Hedgehog/genética , Trombospondina 1/fisiología , Animales , Células Cultivadas , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/genética , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/fisiopatología , Silenciador del Gen , Proteínas Hedgehog/antagonistas & inhibidores , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/genética , Transducción de Señal , Estreptozocina
12.
Cells ; 12(9)2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37174741

RESUMEN

Reactive oxygen species (ROS) are radical oxygen intermediates that serve as important second messengers in signal transduction. However, when the accumulation of these molecules exceeds the buffering capacity of antioxidant enzymes, oxidative stress and endothelial cell (EC) dysfunction occur. EC dysfunction shifts the vascular system into a pro-coagulative, proinflammatory state, thereby increasing the risk of developing cardiovascular (CV) diseases and metabolic disorders. Studies have turned to the investigation of microRNA treatment for CV risk factors, as these post-transcription regulators are known to co-regulate ROS. In this review, we will discuss ROS pathways and generation, normal endothelial cell physiology and ROS-induced dysfunction, and the current knowledge of common metabolic disorders and their connection to oxidative stress. Therapeutic strategies based on microRNAs in response to oxidative stress and microRNA's regulatory roles in controlling ROS will also be explored. It is important to gain an in-depth comprehension of the mechanisms generating ROS and how manipulating these enzymatic byproducts can protect endothelial cell function from oxidative stress and prevent the development of vascular disorders.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades Metabólicas , MicroARNs , Enfermedades Vasculares , Humanos , Especies Reactivas de Oxígeno/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Endoteliales/metabolismo , Estrés Oxidativo/fisiología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Vasculares/metabolismo , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo
13.
PNAS Nexus ; 2(3): pgad050, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36959909

RESUMEN

Patients' suffering from large or deep wounds caused by traumatic and/or thermal injuries have significantly lower chances of recapitulating lost skin function through natural healing. We tested whether enhanced unfolded protein response (UPR) by expression of a UPR transcriptional activator, X-box-binding protein 1 (XBP1) can significantly promote wound repair through stimulating growth factor production and promoting angiogenesis. In mouse models of a second-degree thermal wound, a full-thickness traumatic wound, and a full-thickness diabetic wound, the topical gene transfer of the activated form of XBP1 (spliced XBP1, XBP1s) can significantly enhance re-epithelialization and increase angiogenesis, leading to rapid, nearly complete wound closure with intact regenerated epidermis and dermis. Overexpression of XBP1s stimulated the transcription of growth factors in fibroblasts critical to proliferation and remodeling during wound repair, including platelet-derived growth factor BB, basic fibroblast growth factor, and transforming growth factor beta 3. Meanwhile, the overexpression of XBP1s boosted the migration and tube formation of dermal microvascular endothelial cells in vitro. Our functional and mechanistic investigations of XBP1-mediated regulation of wound healing processes provide novel insights into the previously undermined physiological role of the UPR in skin injuries. The finding opens an avenue to developing potential XBP1-based therapeutic strategies in clinical wound care protocols.

14.
ACS Omega ; 8(18): 16206-16217, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37179642

RESUMEN

The endothelium is the frontline target of multiple metabolic stressors and pharmacological agents. As a consequence, endothelial cells (ECs) display highly dynamic and diverse proteome profiles. We describe here the culture of human aortic ECs from healthy and type 2 diabetic donors, the treatment with a small molecular coformulation of trans-resveratrol and hesperetin (tRES+HESP), followed by proteomic analysis of whole-cell lysate. A number of 3666 proteins were presented in all of the samples and thus further analyzed. We found that 179 proteins had a significant difference between diabetic ECs vs. healthy ECs, while 81 proteins had a significant change upon the treatment of tRES+HESP in diabetic ECs. Among them, 16 proteins showed a difference between diabetic ECs and healthy ECs and the difference was reversed by the tRES+HESP treatment. Follow-up functional assays identified activin A receptor-like type 1 and transforming growth factor ß receptor 2 as the most pronounced targets suppressed by tRES+HESP in protecting angiogenesis in vitro. Our study has revealed the global differences in proteins and biological pathways in ECs from diabetic donors, which are potentially reversible by the tRES+HESP formula. Furthermore, we have identified the TGFß receptor as a responding mechanism in ECs treated with this formula, shedding light on future studies for deeper molecular characterization.

15.
Food Chem ; 426: 136577, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37301043

RESUMEN

Ginger (Zingiber officinale Roscoe) is a high-value food and herb worldwide. The quality of ginger is often related to its production regions. In this study, stable isotopes, multiple elements, and metabolites were investigated together to realize ginger origin traceability. Chemometrics showed that ginger samples could be preliminarily separated, and 4 isotopes (δ13C, δ2H, δ18O, and δ34S), 12 mineral elements (Rb, Mn, V, Na, Sm, K, Ga, Cd, Al, Ti, Mg, and Li), 1 bioelement (%C), and 143 metabolites were the most important variables for discrimination. Furthermore, three algorithms were introduced, and the fused dataset based on VIP features led to the highest accuracies for origin classification, with predictive rates of 98% for K-nearest neighbor and 100% for support vector machine and random forest. The results demonstrated that isotopic, elemental, and metabolic fingerprints were useful indicators for the geographical origins of Chinese ginger.


Asunto(s)
Zingiber officinale , Quimiometría , Isótopos , Minerales , Metabolómica
16.
Foods ; 11(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35681361

RESUMEN

Ginger (Zingiber officinale Roscoe) is one of the most popular spices in the world, with its unique odor. Due to its health benefits, ginger is also widely used as a dietary supplement and herbal medicine. In this study, the main flavor components of gingers processed by different drying methods including hot air drying, vacuum drying, sun-drying, and vacuum-freeze drying, were identified on the basis of headspace-gas chromatography coupled with mass spectrometry (HS-GC-MS) and fast gas chromatography electronic-nose (fast GC e-nose) techniques. The results showed that the ginger dried by hot air drying exhibited high contents of volatile compounds and retained the richest odor in comparison with those dried by other methods, which indicated that hot air drying is more suitable for the production of dried ginger. Sensory description by fast GC e-nose exhibited that ginger flavor was mainly concentrated in the spicy, sweet, minty, fruity, and herbaceous odor. The relative content of the zingiberene was significantly higher in the hot air drying sample than those by other methods, suggesting that dried ginger by hot air drying can retain more unique spicy and pungent odorants. Furthermore, the results of chemometrics analyses showed that the main variance components among the samples by different drying methods were α-naginatene, (+)-cyclosativene, and sulcatone in HS-GC-MS analysis, and α-terpinen-7-al, dimethyl sulfide, and citronellal in fast GC e-nose analysis. For comparison of fresh and dried gingers, terpinolene, terpinen-4-ol, 2,4-decadienal, (E, Z)-, and linalool were considered the main variance components. This study generated a better understanding of the flavor characteristics of gingers by different drying methods and could provide a guide for drying and processing of ginger.

17.
Food Chem ; 396: 133672, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35872496

RESUMEN

Food authenticity regarding different varieties and geographical origins is increasingly becoming a concern for consumers. In this study, headspace gas chromatography-mass spectrometry (HS-GC-MS) and fast gas chromatography electronic nose (fast GC e-nose) were used to successfully distinguish the varieties and geographical origins of dried gingers from seven major production areas in China. By chemometric analysis, a distinct separation between the two varieties of ginger was achieved based on HS-GC-MS. Furthermore, flavor information extracted by fast GC e-nose realized the discrimination of geographical origins, and some potential flavor components were selected as important factors for origin certification. Moreover, several pattern recognition algorithms were compared in varietal and regional identification, and random forest (RF) led to the highest accuracies for discrimination. Overall, a rapid and precise method combining multivariate chemometrics and algorithms was developed to determine varieties and geographical origins of ginger, and it could also be applied to other agricultural products.


Asunto(s)
Compuestos Orgánicos Volátiles , Zingiber officinale , Quimiometría , China , Nariz Electrónica , Cromatografía de Gases y Espectrometría de Masas/métodos , Zingiber officinale/química , Compuestos Orgánicos Volátiles/análisis
18.
Mol Ther Nucleic Acids ; 29: 259-271, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-35892090

RESUMEN

Endothelial cell (EC) permeability is essential to vascular homeostasis in diabetes. MicroRNAs are critical gene regulators whose roles in the EC permeability have yet to be characterized. This study aims to examine the change in cell permeability induced by miR-200 and miR-466 in ECs. Human aortic ECs and dermal microvascular ECs from healthy subjects and type 2 diabetic patients were used. Our in vitro experiments unveiled higher expressions of miR-200 family members and miR-466 in diabetic ECs and in healthy ECs when exposed to high glucose. Overexpression of both miR-200 and miR-466 significantly increased EC permeability through transcriptional suppression of Claudin-5, the cell tight junction protein, by directly binding to its 3' untranslated region. In a mouse model of chronic hyperglycemia mimicking type 2 diabetes in humans (db/db mice), the delayed closure rate of a full-thickness excisional wound was partly rescued by topical application of the miR-200 inhibitor. The topical application of both miR-200 and miR-466 inhibitors exhibited improved efficacy in accelerating wound closure compared with the topical application of miR-200 inhibitor alone. Our study demonstrated the potentially effective approach of miR-200/miR-466 cocktail inhibition to restore vascular integrity and tissue repair in hyperglycemia.

20.
Clin Exp Hypertens ; 32(7): 444-52, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20939752

RESUMEN

Endothelial dysfunction is related to reduced arterial elasticity in patients with essential hypertension. Circulating endothelial progenitor cells (EPCs), an important endogenous repair approach for endothelial injury, is altered in hypertensive patients. However, the association between alteration in circulating EPCs and hypertension-related reduced arterial elasticity has not been reported. The purpose of this study is to investigate the association between alteration in circulating EPCs and hypertension-related reduced arterial elasticity. We measured the artery elasticity profiles including brachial-ankle PWV (baPWV) and C1 large and C2 small artery elasticity indices in patients with essential hypertension (n = 20) and age-matched normotensive subjects (n = 21). The number and activity of circulating EPCs isolated from peripheral blood were determined. Compared to normotensive subjects, the patients with hypertension exhibited decreased C1 large and C2 small artery elasticity indices, as well as increased baPWV. The number of circulating EPCs did not differ between the two groups. The migratory and proliferative activities of circulating EPCs in hypertensive patients were lower than those in normotensive subjects. Both proliferatory and migratory activities of circulating EPCs closely correlated with arterial elasticity profiles, including baPWV and C1 large and C2 small artery elasticity indices. Multivariate analysis identified both proliferative and migratory activities of circulating EPCs as independent predictors of the artery elasticity profiles. The present study demonstrates for the first time that impaired activity of circulating EPCs is associated with reduced arterial elasticity in patients with hypertension. The fall in endogenous repair capacity of vascular endothelium may be involved in the pathogenesis of hypertension-related vascular injury.


Asunto(s)
Arterias , Elasticidad , Endotelio Vascular , Hipertensión/patología , Células Madre , Arterias/patología , Glucemia/metabolismo , Estudios de Casos y Controles , Movimiento Celular , Proliferación Celular , Colesterol/sangre , Células Endoteliales/patología , Endotelio Vascular/patología , Femenino , Citometría de Flujo , Humanos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Persona de Mediana Edad , Células Madre/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA