Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nano Lett ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747518

RESUMEN

Splash, one of the most visually apparent droplet dynamics, can manifest on any surface above a certain impact velocity, regardless of surface wettability. Previous studies demonstrate that elevating the substrate temperature can suppress droplet splash, which is unfavorable for many practical applications, such as spray cooling and combustion. Here, we report that the suppression effect of substrate temperature on splash is nullified by utilizing surfaces with nanostructures. By manipulating air evacuation time through surface nanostructures, we have identified a pathway for precise control over the splash threshold and the ability to tailor the dependence of the splash onset on surface temperature. We further propose a theoretical criterion to determine different splash regimes by considering the competition between air evacuation and the development of flow instabilities. Our findings underscore the crucial role of nanostructures in splash dynamics, offering valuable insights for the control of splash in various industrial scenarios.

2.
J Insect Sci ; 23(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36757064

RESUMEN

In eusocial termites, successful pairing is an essential element of dispersal and distribution after the departure of alates from natal colonies. Two situations could arise during the pairing process: mixed-sex pairs and same-sex pairs. However, most previous studies focused on mixed-sex pairs, overlooking groups formed by same-sex pairings, especially potential fecundity (the total number of oocytes or ovarioles), oogenesis and the development stage of oocytes of females in female-female pairs, and spermatogenesis and testis development of males in male-male pairs. In this study, through experimentation, we investigated the reproductive ability of virgin dealates based on various pairing types as mentioned above. We found that the life spans of virgin dealates can cover 1 yr or even more when they establish a nest with a partner, which is more than 10-fold longer than the life span of individuals establishing a colony alone. After 1 yr of pairing, the potential fecundity of virgin same sex dealates did not degenerate significantly compared with newly emerged dealates, including the number of ovarioles, size of testis, oogenesis, and the development stage of the oocytes. Moreover, when individuals of same-sex pairings experimentally changed into mixed-sex pairs after 1 yr, the eggs produced in the colony hatched into larvae. These findings suggest that dealates which through same-sex pairs retain fecundity after 1 yr have more reproductive potential than dealates that failed to pair with heterosexuals, shedding light on the ecological significance of homosexual behaviors in terms of the successful extension and fecundity of eusocial termites.


Asunto(s)
Isópteros , Femenino , Masculino , Animales , Óvulo , Reproducción , Fertilidad , Larva
3.
Proc Natl Acad Sci U S A ; 116(44): 22331-22340, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31604827

RESUMEN

It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in Agrobacterium tumefaciens, which releases plant defense signal salicylic acid (SA) from its storage form SA ß-glucoside (SAG). Addition of SA substantially reduces gene expression of bacterial virulence. Bacterial vir genes and sghA are differentially transcribed at early and later infection stages, respectively. Plant metabolite sucrose is a signal ligand that inactivates SghR and consequently induces sghA expression. Disruption of sghA leads to increased vir expression in planta and enhances tumor formation whereas mutation of sghR decreases vir expression and tumor formation. These results depict a remarkable mechanism by which A. tumefaciens taps on the reserved pool of plant signal SA to reprogram its virulence upon establishment of infection.


Asunto(s)
Agrobacterium tumefaciens/patogenicidad , Arabidopsis/microbiología , Interacciones Huésped-Patógeno , Factores de Virulencia/genética , Agrobacterium tumefaciens/genética , Arabidopsis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo , Ácido Salicílico/metabolismo , Transducción de Señal , Sacarosa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Langmuir ; 37(45): 13501-13511, 2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34739232

RESUMEN

Gels are soft functional materials with solid networks and open pores filled with solvents (for wet gels) or air (for aerogels), displaying broad applications in tissue engineering, catalysis, environmental remediation, energy storage, etc. However, currently known gels feature only a single (either solid-liquid or solid-vapor) interface, largely limiting their application territories. Therefore, it is both fundamentally intriguing and practically significant to develop conceptually new gel materials that possess solid-liquid-vapor multiple interfaces. Herein, we demonstrate a unique solid-liquid-vapor triphase gel, named as aerohydrogel, by gelling of a poly(vinyl alcohol) aqueous solution with glutaraldehyde in the presence of superhydrophobic silica aerogel microparticles. Owing to its continuous solid, liquid, and vapor phases, the resultant aerohydrogel simultaneously displays solid-liquid, solid-vapor, and liquid-vapor interfaces, leading to excellent properties including tunable density (down to 0.43 g·cm-3), considerable hydrophobicity, and excellent elasticity (compressive ratio of up to 80%). As a proof-of-concept application, the aerohydrogel exhibits a higher evaporative cooling efficiency than its hydrogel counterpart and a better cooling capability than the commercial phase change cooling film, respectively, showing promising performance in cooling various devices. Moreover, the resulting aerohydrogel could be facilely tailored with specific (e.g., magnetic) properties for emerging applications such as solar steam generation. This work extends biphase gel (hydrogel or aerogel) to solid-liquid-vapor triphase gel, as well as provides a promising strategy for designing more aerohydrogels serving as soft functional materials for applications in various emerging fields.

5.
Langmuir ; 37(19): 5923-5931, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33939442

RESUMEN

Aerogel is a kind of high-performance lightweight open-porous solids with ultralow density, high specific surface area, and broad application in many emerging fields including biotechnology, energy, environment, aerospace, etc. A giant challenge remains in preventing of the hydrophilic aerogel framework shrinkage when replacing of solvent with air in its extremely abundant nanosized pores during its fabrication process in ambient conditions. In this work, started from a linear polymeric precursor with further condensation reaction, superhydrophilic silica aerogels with self-reinforced microstructure and the least volume shrinkage have been successfully obtained via ambient pressure drying process without use of any additives in the presence of a low surface tension solvent. The resulting superhydrophilic silica aerogels possess specific surface area up to 1065 m2/g, pore volume up to 2.17 cm3/g and density down to 84 mg/cm3, and these values are comparable to those of their counterparts obtained by supercritical CO2 drying process. Moreover, as an application demonstration, the bioinspired hydrogels with desirable mechanical flexibility and adhesive performance at extremely harsh environment (e.g., below -50 °C) have been successfully synthesized by mimicking carrier of a functional bioagent with the resulting superhydrophilic silica aerogel microparticles. Our work has made a significant step forward for future high-performance hydrophilic aerogels with self-enhanced microstructures and the resulting superhydrophilic aerogels have shown great potentials in making functional hydrogels with bionic properties.

6.
BMC Genomics ; 20(1): 807, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694530

RESUMEN

BACKGROUND: Xanthomonas citri pv. citri (Xcc) is a citrus canker causing Gram-negative bacteria. Currently, little is known about the biological and molecular responses of Xcc to low temperatures. RESULTS: Results depicted that low temperature significantly reduced growth and increased biofilm formation and unsaturated fatty acid (UFA) ratio in Xcc. At low temperature Xcc formed branching structured motility. Global transcriptome analysis revealed that low temperature modulates multiple signaling networks and essential cellular processes such as carbon, nitrogen and fatty acid metabolism in Xcc. Differential expression of genes associated with type IV pilus system and pathogenesis are important cellular adaptive responses of Xcc to cold stress. CONCLUSIONS: Study provides clear insights into biological characteristics and genome-wide transcriptional analysis based molecular mechanism of Xcc in response to low temperature.


Asunto(s)
Respuesta al Choque por Frío/genética , Respuesta al Choque por Frío/fisiología , RNA-Seq , Xanthomonas/genética , Xanthomonas/fisiología , Flagelos/genética , Perfilación de la Expresión Génica , Lípidos de la Membrana/metabolismo , Xanthomonas/metabolismo
7.
Appl Microbiol Biotechnol ; 99(22): 9663-74, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26198882

RESUMEN

In order to produce rubusoside, enzymes with preferential specificity for the saccharide sophorose were tested for ability to produce rubusoside from stevioside. We identified BGL1, a ß-glucosidase from Streptomyces sp. GXT6, as an enzyme for rubusoside production. Out of several saccharide substrates, BGL1 showed the most affinity to sophorose. This enzyme only hydrolyzes the glucose moiety of the sophoroside at C-13 in stevioside. Production of rubusoside was determined by (1)H and (13)C nuclear magnetic resonance (NMR). Thus, rubusoside was produced from stevioside and the stevioside conversion rate was 98.2 %. The production yield of rubusoside was 78.8 % in 6 h.


Asunto(s)
Diterpenos de Tipo Kaurano/biosíntesis , Diterpenos de Tipo Kaurano/metabolismo , Glucanos/metabolismo , Glucósidos/biosíntesis , Glucósidos/metabolismo , Streptomyces/enzimología , beta-Glucosidasa/metabolismo , Espectroscopía de Resonancia Magnética
8.
Adv Mater ; 36(13): e2309171, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38104281

RESUMEN

Narrow bandgap cubic formamidine perovskite (α-FAPbI3) is widely studied for its potential to achieve record­breaking efficiency. However, its high preparation difficulty caused by lattice instability is criticized. A popular strategy for stabilizing the α-FAPbI3 lattice is to replace intrinsic FA+ or I- with smaller ions of MA+, Cs+, Rb+, and Br-, whereas this generally leads to broadened optical bandgap and phase separation. Studies show that ions substitution-free phase-pure α-FAPbI3 can achieve intrinsic phase stability. However, the challenging preparation of high-quality films has hindered its further development. Here, a facile synthesis of high-quality MA+, Cs+, Rb+, and Br--free phase-pure α-FAPbI3 perovskite film by a new solution modification strategy is reported. This enables the activation of lead-iodine (Pb─I) frameworks by forming the coated Pb⋯O network, thus simultaneously promoting spontaneous homogeneous nucleation and rapid phase transition from δ to α phase. As a result, the efficient and stable phase-pure α-FAPbI3 PSC is obtained through a one-step method without antisolvent treatment, with a record efficiency of 23.15% and excellent long-term operating stability for 500 h under continuous light stress.

9.
Adv Sci (Weinh) ; 10(28): e2303992, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37541313

RESUMEN

As a key contender in the field of photovoltaics, third-generation thin-film perovskite solar cells (PSCs) have gained significant research and investment interest due to their superior power conversion efficiency (PCE) and great potential for large-scale production. For commercialization consideration, low-cost and scalable fabrication is of primary importance for PSCs, and the development of the applicable film-forming techniques that meet the above requirements plays a key role. Currently, large-area perovskite films are mainly produced by printing techniques, such as slot-die coating, inkjet printing, blade coating, and screen-printing. Among these techniques, screen printing offers a high degree of functional layer compatibility, pattern design flexibility, and large-scale ability, showing great promise. In this work, the advanced progress on applying screen-printing technology in fabricating PSCs from technique fundamentals to practical applications is presented. The fundamentals of screen-printing technique are introduced and the state-of-the-art studies on screen-printing different functional layers in PSCs and the control strategies to realize fully screen-printed PSCs are summarized. Moreover, the current challenges and opportunities faced by screen-printed perovskite devices are discussed. This work highlights the critical significance of high throughput screen-printing technology in accelerating the commercialization course of PSCs products.

10.
Research (Wash D C) ; 2023: 0111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223699

RESUMEN

Repelling liquid drops from engineering surfaces has attracted great attention in a variety of applications. To achieve efficient liquid shedding, delicate surface textures are often introduced to sustain air pockets at the liquid-solid interface. However, those surfaces are prone to suffer from mechanical failure, which may bring reliability issues and thus limits their applications. Here, inspired by the aerodynamic Leidenfrost effect, we present that impacting drops are directionally repelled from smooth surfaces supplied with an exogenous air layer. Our theoretical analysis reveals that the synchronized nonwetting and oblique bouncing behavior is attributed to the aerodynamic force arising from the air layer. The versatility and practicability of our approach allow for drop repellency without the aid of any surface wettability treatment and also avoid the consideration of mechanical stability issues, which thereby provides a promising candidate for the applications that necessitate liquid shedding, e.g., resolve the problem of tiny raindrop adhesion on the automobile side window during driving.

11.
Heliyon ; 9(11): e21874, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034638

RESUMEN

Flavonoids are a highly abundant class of secondary metabolites present in plants. Isoflavonoids, in particular, are primarily synthesized in leguminous plants within the subfamily Papilionoideae. Numerous reports have established the favorable role of isoflavonoids in preventing a range of human diseases. Among the isoflavonoid components, glyceollins are synthesized specifically in soybean plants and have displayed promising effects in mitigating the occurrence and progression of breast and ovarian cancers as well as other diseases. Consequently, glyceollins have become a sought-after natural component for promoting women's health. In recent years, extensive research has focused on investigating the molecular mechanism underlying the preventative properties of glyceollins against various diseases. Substantial progress has also been made toward elucidating the biosynthetic pathway of glyceollins and exploring potential regulatory factors. Herein, we provide a review of the research conducted on glyceollins since their discovery five decades ago (1972-2023). We summarize their pharmacological effects, biosynthetic pathways, and advancements in chemical synthesis to enhance our understanding of the molecular mechanisms of their function and the genes involved in their biosynthetic pathway. Such knowledge may facilitate improved glyceollin synthesis and the creation of health products based on glyceollins.

12.
ACS Appl Mater Interfaces ; 15(24): 29236-29243, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37290066

RESUMEN

CsPbI3, an all-inorganic perovskite material with suitable band gap and excellent thermal stability, has garnered significant attention for its potential in perovskite solar cells (PSCs). However, CsPbI3 is susceptible to phase changes from photoactive to photoinactive in humid environments. Hence, it is crucial to achieve controllable growth of CsPbI3 perovskite thin films with the desired ß-crystal phase and compact morphology for efficient and stable PSCs. Herein, MAAc was used as a solvent for the CsPbI3 precursor to fabricate ß-CsPbI3 perovskite. An intermediate compound of CsxMA1-xPbIxAc3-x was initially formed in the MAAc solution, and during annealing, the MA+ and Ac- ions were replaced by Cs+ and I- ions, respectively. Furthermore, the incorporation of strong C═O···Pb coordination stabilized the black-phase ß-CsPbI3 and facilitated the growth of crystals with a narrow vertical orientation and large grain size. As a result, the PSCs with an efficiency of 18.9% and improved stability (less than 10% decay after 2000 h of storage in N2 and less than 30% decay after 500 h of storage in humid air without any encapsulation) were achieved.

13.
Micromachines (Basel) ; 13(10)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36295928

RESUMEN

The spread of microorganisms in the air, especially pathogenic microorganisms, seriously affects people's normal life. Therefore, the analysis and detection of airborne microorganisms is of great importance in environmental detection, disease prevention and biosafety. As an emerging technology with the advantages of integration, miniaturization and high efficiency, microfluidic chips are widely used in the detection of microorganisms in the environment, bringing development vitality to the detection of airborne microorganisms, and they have become a research highlight in the prevention and control of infectious diseases. Microfluidic chips can be used for the detection and analysis of bacteria, viruses and fungi in the air, mainly for the detection of Escherichia coli, Staphylococcus aureus, H1N1 virus, SARS-CoV-2 virus, Aspergillus niger, etc. The high sensitivity has great potential in practical detection. Here, we summarize the advances in the collection and detection of airborne microorganisms by microfluidic chips. The challenges and trends for the detection of airborne microorganisms by microfluidic chips was also discussed. These will support the role of microfluidic chips in the prevention and control of air pollution and major outbreaks.

14.
Curr Alzheimer Res ; 19(10): 734-741, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36380407

RESUMEN

BACKGROUND: Over a dozen studies have investigated the effect of the R219K variant in the ATP-binding cassette transporter A1 (ABCA1) gene on the risk of Alzheimer's disease (AD), but the results are conflicting. OBJECTIVE: We performed a systematic review and meta-analysis to comprehensively assess the association between the ABCA1 R219K variant and the risk of AD. METHODS: Studies included in the meta-analysis were obtained by searching PubMed, Web of Science and AlzGene. Review Manager 5.4 was used for meta-analysis. Both the odds ratio (OR) and its 95% confidence interval (CI) were used to evaluate the effect of ABCA1 R219K polymorphism on AD susceptibility. Heterogeneity between the included studies was assessed using I2 statistics and Cochran Qtest. Funnel plots were used to assess publication bias. RESULTS: A total of 14 eligible studies involving 10084 subjects were retrieved from PubMed, Web of Science and AlzGene. Meta-analysis results showed that R219K polymorphism was significantly associated with a decreased risk of AD in Chinese under a recessive model (OR = 0.67; 95% CI = 0.51- 0.88; P = 0.004). CONCLUSION: The present meta-analysis indicated that the KK genotype of R219K polymorphism may act as a protective factor for AD in the Chinese population. Additional studies with larger sample sizes are needed to further confirm this association.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Pueblo Asiatico , Transportador 1 de Casete de Unión a ATP/genética , Predisposición Genética a la Enfermedad , Genotipo , Polimorfismo Genético , Polimorfismo de Nucleótido Simple/genética
15.
Genes Genomics ; 43(7): 829-835, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33932219

RESUMEN

BACKGROUND: 2,4-Dinitrophenol (2,4-DNP) is an important organic environmental pollutant that is highly toxic to all forms of living organisms. A gram-positive strain (designated XM24D) was isolated from 2,4-DNP-contaminated soil by an enrichment technique. OBJECTIVE: The study was designed to analyze the ability of XM24D to degrade 2,4-DNP and its analogs and to reveal the degradation pathways of these aromatic compounds. METHODS: The degradation ability of XM24D was tested by a growth experiment. 2,4-DNP and its analog degradation pathways were predicted by genome and comparative transcriptome sequencing. RESULTS: Growth profiles showed that XM24D was able to utilize 2,4-DNP as the sole source of carbon, nitrogen and energy. Analogs of 2,4-DNP, including 4-nitrophenol (PNP) and 2-chloro-4-nitrophenol (2C4NP), can also be degraded by XM24D. Genome analysis showed that the XM24D genome contains two chromosomes with a combined size of 9.08 Mb and an average GC content of 67.07 %. Average nucleotide identity analysis indicated that Rhodococcus imtechensis RKJ300 is the most closely related strain to XM24D. Comparative transcriptome analysis revealed that the 2,4-DNP/PNP/2C4NP degradation pathway in XM24D is highly similar in sequence and organization to the 2,4-DNP degradation pathway in Rhodococcus opacus HL PM-1, the PNP degradation pathway in Rhodococcus opacus SAO101 and the 2C4NP degradation pathway in Rhodococcus imtechensis RKJ300. These results suggested that 2,4-DNP/PNP/2C4NP was degraded via the 2,4-dinitrocyclohexanone/4-nitrocatechol/hydroxyquinol pathway in XM24D. CONCLUSIONS: Genomic and transcriptomic information on XM24D provides a valuable reference for further investigating the evolutionary characteristics of nitrophenol degradation pathways in microorganisms.


Asunto(s)
2,4-Dinitrofenol/metabolismo , Contaminantes Ambientales/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Composición de Base , Biodegradación Ambiental , Genoma Bacteriano , ARN Bacteriano , Análisis de Secuencia de ARN , Transcriptoma
16.
Mitochondrial DNA B Resour ; 6(3): 907-908, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33796676

RESUMEN

Schizonepeta tenuifolia (Benth.) Briq. is a traditional Chinese medicinal herb. The complete chloroplast genome sequence of S. tenuifolia was obtained by high-throughput sequencing platform. The chloroplast genome of S. tenuifolia is a circular form of 151,254 bp in length, with an average GC content of 37.85%. The genome contains a set of 132 genes, including 87 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Phylogenetic analysis based on complete chloroplast genome sequences indicates that S. tenuifolia has a close relationship with Dracocephalum palmatum. This study provides a molecular basis for the classification of S. tenuifolia.

17.
Mitochondrial DNA B Resour ; 6(7): 1939-1940, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34179474

RESUMEN

Clerodendrum bungei Steud. is one kind of traditional medical herb which can be used for airway hyperreactivity treatment. In this study, the complete chloroplast genome sequence of C. bungei was assembled. Its complete circular chloroplast DNA length was 151,680 bp. The genome was made up of a large single-copy region of 83,189 bp, a small single-copy region of 17,311 bp, and a pair of inverted repeat regions of 25,590 bp. The genome totally encoded 130 genes, containing 85 protein-coding genes, 37 tRNA genes, and eight rRNA genes. The phylogenetic analysis indicates that C. bungei belongs to the Lamiaceae family.

18.
Mitochondrial DNA B Resour ; 6(7): 1982-1983, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34179488

RESUMEN

Verbena officinalis is one kind of traditional medical herb which has potential for multiple diseases' treatment. In this study, the complete chloroplast genome sequence of V. officinalis was assembled. Its complete circular chloroplast DNA length was 153,491 bp. The genome was made up of a large single-copy region of 84,518 bp, a small single-copy region of 17,357 bp, and a pair of inverted repeat regions of 25,808 bp. The genome totally encoded 128 genes, containing 83 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Phylogenetic analysis indicates that V. officinalis belongs to the verbenaceae family.

19.
Research (Wash D C) ; 2020: 2763409, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33123682

RESUMEN

Nonradiative recombination losses originating from crystallographic distortions and issues occurring upon interface formation are detrimental for the photovoltaic performance of perovskite solar cells. Herein, we incorporated a series of carbamide molecules (urea, biuret, or triuret) consisting of both Lewis base (-NH2) and Lewis acid (-C=O) groups into the perovskite precursor to simultaneously eliminate the bulk and interface defects. Depending on the different coordination ability with perovskite component, the incorporated molecules can either modify crystallization dynamics allowing for large crystal growth at low temperature (60°C), associate with antisite or undercoordinated ions for defect passivation, or accumulate at the surface as an energy cascade layer to enhance charge transfer, respectively. Synergistic benefits of the above functions can be obtained by rationally optimizing additive combinations in an all-in-one deposition method. As a result, a champion efficiency of 21.6% with prolonged operational stability was achieved in an inverted MAPbI3 perovskite solar cell by combining biuret and triuret additives. The simplified all-in-one fabrication procedure, adaptable to different types of perovskites in terms of pure MAPbI3, mixed perovskite, and all-inorganic perovskite, provides a cost-efficient and reproducible way to obtain high-performance inverted perovskite solar cells.

20.
ACS Appl Mater Interfaces ; 11(6): 6022-6030, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30652851

RESUMEN

Solar cells based on organic-inorganic hybrid lead-halide perovskites are very promising because of their high performance and solution process feasibility. Elemental engineering on perovskite composition is a facile path to obtain high-quality crystals for efficient and stable solar cells. It was found that partially substituting I- with Cl- in the perovskite precursor promoted crystal growth, with the grain size larger than the layer thickness, and facilitated the generation of a self-passivation layer of PbI2. Whereas the residual Cl- ions were suspected to diffuse to the hole-transport layer consisting of ubiquitously spiro-OMeTAD, the formation of highly bounded ionic pairing of Cl- with the oxidized state of spiro-OMeTAD led to insufficient charge extraction and severely reversible performance degradation. This issue was effectively alleviated upon Br- doping owing to the generation of Pb-Br bonds in the lattice that strengthened the phase stability by improving the binding energy between each unit. The binary halide (Br-/Cl-)-doped perovskites resulted in a champion power conversion efficiency of 20.2% with improved long-term storage stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA