Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Org Chem ; 89(12): 8601-8609, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38835151

RESUMEN

This work reports the mild and efficient Ru-catalyzed trifluoroisopropylation of arenes using 2-bromo-1,1,1-trifluoropropane. Various bioactive molecules, such as purine and nucleoside derivatives, were well-suited for this transformation, affording the corresponding products in moderate-to-good yields. This method provides an efficient strategy for synthesizing trifluoroisopropyl molecules for drug discovery.

2.
Nutr Neurosci ; 27(5): 413-424, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37116073

RESUMEN

OBJECTIVE: The main purpose of the present study was to assess the beneficial effect of Lactobacillus plantarum GM11 (LacP GM11), screened from Sichuan traditional fermented food, in depressive rats induced by chronic unpredictable mild stress (CUMS). METHODS: Male SPF SD rats were randomly assigned to 3 groups: the control group, CUMS group and CUMS + LacP GM11 group (n = 10). The rats in the CUMS and LacP GM11 groups received CUMS stimulation for 42 d. The behavioral tests and levels of monoamine neurotransmitter, glucocorticoid hormone and brain-derived neurotrophic factor (BDNF) in the serum and hippocampus were measured. The effects of LacP GM11 on the mRNA and protein expression of BDNF and cAMP response element binding protein (CREB) in the hippocampus were also investigated. RESULTS: After supplementation for 21 d, LacP GM11 was associated with alleviation of depressive-like behavior, not anxiety-like behavior, in depressive rats. LacP GM11 increased the levels of 5-hydroxytryptamine (5-HT) and BDNF and decreased the level of cortisol (CORT) in the serum and hippocampus in depressed rats. In addition, treatment with LacP GM11 also increased the mRNA and protein expression of BDNF and CREB in the hippocampus. CONCLUSIONS: This work has revealed that LacP GM11 has potential beneficial effects on depression. This effect might be related to alleviating monoamine neurotransmitter deficiency, HPA axis hyperfunction and CREB-BDNF signaling pathway downregulation. This study demonstrates that LacP GM11 could be a potential therapeutic approach to treat depression and other mental health problems.


Asunto(s)
Depresión , Lactobacillus plantarum , Ratas , Masculino , Animales , Depresión/tratamiento farmacológico , Depresión/etiología , Depresión/metabolismo , Antidepresivos/uso terapéutico , Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Sistema Hipotálamo-Hipofisario , Ratas Sprague-Dawley , Sistema Hipófiso-Suprarrenal , Hipocampo/metabolismo , Serotonina/metabolismo , Neurotransmisores/metabolismo , ARN Mensajero/metabolismo , Estrés Psicológico/psicología , Modelos Animales de Enfermedad
3.
J Nanobiotechnology ; 22(1): 95, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448959

RESUMEN

BACKGROUND: The prognosis for hepatocellular carcinoma (HCC) remains suboptimal, characterized by high recurrence and metastasis rates. Although metalloimmunotherapy has shown potential in combating tumor proliferation, recurrence and metastasis, current apoptosis-based metalloimmunotherapy fails to elicit sufficient immune response for HCC. RESULTS: A smart responsive bimetallic nanovaccine was constructed to induce immunogenic cell death (ICD) through pyroptosis and enhance the efficacy of the cGAS-STING pathway. The nanovaccine was composed of manganese-doped mesoporous silica as a carrier, loaded with sorafenib (SOR) and modified with MIL-100 (Fe), where Fe3+, SOR, and Mn2+ were synchronized and released into the tumor with the help of the tumor microenvironment (TME). Afterward, Fe3+ worked synergistically with SOR-induced immunogenic pyroptosis (via both the classical and nonclassical signaling pathways), causing the outflow of abundant immunogenic factors, which contributes to dendritic cell (DC) maturation, and the exposure of double-stranded DNA (dsDNA). Subsequently, the exposed dsDNA and Mn2+ jointly activated the cGAS-STING pathway and induced the release of type I interferons, which further led to DC maturation. Moreover, Mn2+-related T1 magnetic resonance imaging (MRI) was used to visually evaluate the smart response functionality of the nanovaccine. CONCLUSION: The utilization of metallic nanovaccines to induce pyroptosis-mediated immune activation provides a promising paradigm for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/terapia , Nanovacunas , Carcinoma Hepatocelular/terapia , Piroptosis , Inmunoterapia , Microambiente Tumoral
4.
J Nanobiotechnology ; 21(1): 30, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36698190

RESUMEN

BACKGROUND: Combined therapy based on the effects of cascade reactions of nanoplatforms to combat specific solid tumor microenvironments is considered a cancer treatment strategy with transformative clinical value. Unfortunately, an insufficient O2 supply and the lack of a visual indication hinder further applications of most nanoplatforms for solid tumor therapy. RESULTS: A visualizable nanoplatform of liposome nanoparticles loaded with GOD, H(Gd), and PFP and grafted with the peptide tLyP-1, named tLyP-1H(Gd)-GOD@PFP, was constructed. The double-domain peptide tLyP-1 was used to specifically target and penetrate the tumor cells; then, US imaging, starvation therapy and sonodynamic therapy (SDT) were then achieved by the ultrasound (US)-activated cavitation effect under the guidance of MR/PA imaging. GOD not only deprived the glucose for starvation therapy but also produced H2O2, which in coordination with 1O2 produced by H(Gd), enable the effects of SDT to achieve a synergistic therapeutic effect. Moreover, the synergistic therapy was enhanced by O2 from PFP and low-intensity focused ultrasound (LIFU)-accelerated redox effects of the GOD. The present study demonstrated that the nanoplatform could generate a 3.3-fold increase in ROS, produce a 1.5-fold increase in the maximum rate of redox reactions and a 2.3-fold increase in the O2 supply in vitro, and achieve significant tumor inhibition in vivo. CONCLUSION: We present a visualizable nanoplatform with tumor-penetrating ability that can be unlocked by US to overcome the current treatment problems by improving the controllability of the O2 supply, which ultimately synergistically enhanced cascade therapy.


Asunto(s)
Retroalimentación Sensorial , Nanopartículas , Humanos , Peróxido de Hidrógeno , Línea Celular Tumoral , Nanopartículas/química , Péptidos , Hipoxia
5.
Anaerobe ; 79: 102691, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36592651

RESUMEN

OBJECTIVES: Carbapenem-resistant Bacteroides fragilis has emerged globally and cfiA is the key underlying factor. However, the prevalence of cfiA-positive carbapenem-resistant B. fragilis varies among countries. Therefore, we investigated the prevalence of cfiA-positive B. fragilis clinical isolates in a tertiary hospital in China. METHODS: Carbapenem-resistant cfiA-positive B. fragilis isolates were identified using polymerase chain reaction. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to identify the characteristic mass spectra of cfiA-positive B. fragilis. RESULTS: The prevalence of cfiA among 153 B. fragilis isolates was 22.2% (34/153), when 20.6% (7/34) cfiA-positive B. fragilis strains were isolated from pediatric patients. Twenty-one carbapenem-resistant B. fragilis isolates were identified and were all positive with cfiA gene. Two characteristic peaks (4825 and 9642 Da) were identified using MALDI-TOF MS, and the sensitivity, specificity, and both the positive and negative predictive values of these two peaks were 100%. A new peak shift from 9627 Da for cfiA-negative isolates to 9642 Da for cfiA-positive isolates was observed. CONCLUSIONS: A high prevalence of cfiA was observed among B.fragilis isolates in this study, especially those isolated from pediatric patients. Characteristic MS spectra can accurately discriminate cfiA-positive and -negative B. fragilis isolates and can contribute to the rapid screening of cfiA-positive B. fragilis isolates in clinical laboratories.


Asunto(s)
Infecciones Bacterianas , Infecciones por Bacteroides , Humanos , Niño , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/análisis , beta-Lactamasas/genética , Bacteroides fragilis , Prevalencia , Carbapenémicos/farmacología , Hospitales de Enseñanza , China/epidemiología , Infecciones por Bacteroides/epidemiología , Pruebas de Sensibilidad Microbiana
6.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(6): 1185-1191, 2023 Dec 25.
Artículo en Zh | MEDLINE | ID: mdl-38151942

RESUMEN

A novel structural dynamics test method and device were designed to test the biomechanical effects of dynamic axial loading on knee cartilage and meniscus. Firstly, the maximum acceleration signal-to-noise ratio of the experimental device was calculated by applying axial dynamic load to the experimental device under unloaded condition with different force hammers. Then the experimental samples were divided into non-specimen group (no specimen loaded), sham specimen group (loaded with polypropylene samples) and bovine knee joint specimen group (loaded with bovine knee joint samples) for testing. The test results show that the experimental device and method can provide stable axial dynamic load, and the experimental results have good repeatability. The final results confirm that the dynamic characteristics of experimental samples can be distinguished effectively by this device. The experimental method proposed in this study provides a new way to further study the biomechanical mechanism of knee joint structural response under axial dynamic load.


Asunto(s)
Articulación de la Rodilla , Menisco , Animales , Bovinos , Fenómenos Biomecánicos , Articulación de la Rodilla/fisiología , Fenómenos Mecánicos , Soporte de Peso
7.
Plant J ; 107(1): 198-214, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33884679

RESUMEN

Anthocyanins play an important role in the growth of plants, and are beneficial to human health. In plants, the MYB-bHLH-WD40 (MBW) complex activates the genes for anthocyanin biosynthesis. However, in rice, the WD40 regulators remain to be conclusively identified. Here, a crucial anthocyanin biosynthesis gene was fine mapped to a 43.4-kb genomic region on chromosome 2, and a WD40 gene OsTTG1 (Oryza sativa TRANSPARENT TESTA GLABRA1) was identified as ideal candidate gene. Subsequently, a homozygous mutant (osttg1) generated by CRISPR/Cas9 showed significantly decreased anthocyanin accumulation in various rice organs. OsTTG1 was highly expressed in various rice tissues after germination, and it was affected by light and temperature. OsTTG1 protein was localized to the nucleus, and can physically interact with Kala4, OsC1, OsDFR and Rc. Furthermore, a total of 59 hub transcription factor genes might affect rice anthocyanin biosynthesis, and LOC_Os01g28680 and LOC_Os02g32430 could have functional redundancy with OsTTG1. Phylogenetic analysis indicated that directional selection has driven the evolutionary divergence of the indica and japonica OsTTG1 alleles. Our results suggest that OsTTG1 is a vital regulator of anthocyanin biosynthesis, and an important gene resource for the genetic engineering of anthocyanin biosynthesis in rice and other plants.


Asunto(s)
Antocianinas/biosíntesis , Oryza/genética , Proteínas de Plantas/genética , Antocianinas/genética , Regulación de la Expresión Génica de las Plantas , Haplotipos , Oryza/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polimorfismo de Nucleótido Simple , Selección Genética , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos , Repeticiones WD40
8.
Small ; 18(15): e2106252, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246943

RESUMEN

In thrombotic diseases, the effects of reactive oxygen species (ROS)-mediated oxidative stress as a "perpetrator" in thrombosis must be resolved. Accordingly, an insufficient understanding of thrombus therapy prompted the authors to pursue a more comprehensive and efficient antithrombotic treatment strategy. A Prussian blue (PB)-based nanodroplet system (PB-PFP@PC) is designed using PB and perfluorinated pentane (PFP) in the core, and a targeting peptide (CREKA, Cys-Arg-Glu-Lys-Ala) is attached to poly(lactic-coglycolic acid) (PLGA) as the delivery carrier shell. Upon near-infrared (NIR) laser irradiation, PB and PFP jointly achieve an unprecedented dual strategy for drug-free thrombolysis: photothermal therapy (PTT) combined with optical droplet vaporization (ODV). PB, a nanoenzyme, also regulates the vascular microenvironment via its antioxidant activity to continuously scavenge abnormally elevated ROS and correspondingly reduce inflammatory factors in the thrombus site. This study provides a demonstration of not only the potential of ODV in thrombus therapy but also the mechanism underlying PTT thrombolysis due to thermal ablation-induced fibrin network structural damage. Moreover, PB catalyzes ROS to generate oxygen (O2 ), which combines with the ODV effect, enhancing the ultrasound signal. Thus, regulation of the thrombosis microenvironment combined with specific nonpharmaceutical thrombolysis by PB nanodroplets provides a more comprehensive and efficient antithrombotic therapeutic strategy.


Asunto(s)
Nanopartículas , Trombosis , Ferrocianuros , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Humanos , Nanopartículas/química , Especies Reactivas de Oxígeno , Terapia Trombolítica , Trombosis/terapia
9.
Int J Obes (Lond) ; 46(5): 1002-1008, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35079130

RESUMEN

BACKGROUND: Genetically modified probiotics have potential for use as a novel approach to express bioactive molecules for the treatment of obesity. The objective of the present study was to investigate the beneficial effect of genetically modified Escherichia coli Nissle 1917 (EcN-GM) in obese C57BL/6J mice. METHODS: First, an obesity model in C57BL/6J mice was successfully established. Then, the obese mice were randomly assigned into three groups: obese mice (OB), obese mice + EcN-GM (OB + EcN-GM), and obese mice + orlistat (OB + orlistat) (n = 10 in each group). The three groups were gavaged with 0.3 ml of 1010 CFU/ml control EcN, EcN-GM (genetically engineered EcN) and 10 ml/kg orlistat. Body weight, food consumption, fat pad and organ weight, hepatic biochemistry and hepatic histopathological alterations were measured. The effects of EcN-GM on the levels of endocrine peptides and the intestinal microbiota were also analyzed. RESULTS: After supplementation for 8 weeks, EcN-GM was associated with decreases in body weight gain, food intake, fat pad and liver weight, and alleviation hepatocyte steatosis in obese mice. EcN-GM also increased the level of GLP-1 in serum and alleviated leptin and insulin resistance. Moreover, supplementation with EcN-GM increased the α-diversity of the intestinal microbiota but did not significantly influence the relative abundance of Firmicutes and Bacteroidetes. CONCLUSIONS: These results indicated that EcN-GM, a genetically modified E. coli strain, may be a potential therapeutic approach to treat obesity. The beneficial effect of EcN-GM may be independent of the alteration of the diversity and composition of the intestinal microbiota in obese mice.


Asunto(s)
Escherichia coli , Probióticos , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad , Orlistat/farmacología , Probióticos/farmacología
10.
Ann Clin Microbiol Antimicrob ; 21(1): 53, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36434697

RESUMEN

BACKGROUND: Corynebacterium striatum is a microorganism with an excellent capacity for biofilm production and thus has been correlated with nosocomial transmission and invasive infections. However, little is known about the mechanism of biofilm formation of this commensal pathogen. In this study, we aimed to investigate the biofilm formation abilities of multidrug-resistant Corynebacterium striatum clinical isolates and the roles of extracellular proteins, exopolysaccharides and extracellular DNA in mediating more robust biofilm formation by the isolates of C. striatum. METHODS: C. striatum isolates were identified using VITEK-2 ANC card, matrix-assisted laser desorption/ionization-time of flight mass spectrometry and 16S rRNA sequencing. The antibiotic susceptibility test was performed using the broth microdilution method. The distribution of spaDEF genes among C. striatum isolates was detected by polymerase chain reaction, and pulsed-field gel electrophoresis typing was employed to analyze the genotypes of the isolates. Crystal violet staining and scanning electron microscopy techniques were used to detect biofilm production by C. striatum isolates. Biofilm degradation assay was performed to observe the effects of extracellular matrix degradative agents (proteinase K, dispersin B, and DNase I) on C. striatum biofilms. RESULTS: Twenty-seven C. striatum isolates were enrolled in the study, and the resistance rates were the highest (100%, 27/27) against penicillin and ceftriaxone. Approximately 96.3% (26/27) C. striatum isolates were resistant to at least three different types of antimicrobial agents tested. All isolates were confirmed to be biofilm producers, and 74.07% (20/27) isolates presented moderate to strong biofilm production abilities. P7 genotype (44.4%, 12/27) was identified to as the predominant genotype, and all of isolates belonging to this genotype were multidrug-resistant and had stronger biofilm-forming abilities. Most C. striatum isolates (74.07%, 20/27) carry spaD, spaE, and spaF genes, which encode spa-type pili. However, the correlation between the expression of spa-type genes and the biofilm production abilities of the C. striatum isolates was not found. The biofilms of 80% (8/10), 90% (9/10), and 100% (10/10) C. striatum isolates with moderate to strong biofilm production abilities were significantly eliminated upon the treatment of dispersin B (20 µg/mL), DNase I (20 µg/mL), and proteinase K (20 µg/mL) (p < 0.05), respectively. For the combination groups with two kinds of biofilm-degradative agents, the combination of 20 µg/mL proteinase K/dispersin B showed the strongest biofilm-eliminating effects, when the biofilms of 90% (9/10) C. striatum isolates degraded more than 50%. CONCLUSIONS: The C. striatum isolates that belonged to the predominant genotype showed a multidrug resistance (MDR) phenotype and strong biofilm formation abilities. Extracellular matrix seems to be an essential determinant in mediating biofilm formation of MDR C. striatum, since extracellular matrix degradative agents (proteinase K, dispersin B and DNase I) showed strong biofilm-eliminating effects toward multidrug-resistant C. striatum isolates. The findings of this study highlight new ideas/directions to explore the whole nature of biofilm formation of C. striatum and the function of extracellular matrix in this process.


Asunto(s)
Antibacterianos , Biopelículas , ARN Ribosómico 16S/genética , Endopeptidasa K/farmacología , Antibacterianos/farmacología , Desoxirribonucleasa I/farmacología , Matriz Extracelular
11.
Theor Appl Genet ; 134(5): 1531-1543, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33688983

RESUMEN

KEY MESSAGE: we identified a functional chromogen gene C from wild rice, providing a new insight of anthocyanin biosynthesis pathway in indica and japonica. Accumulation of anthocyanin is a desirable trait to be selected in rice domestication, but the molecular mechanism of anthocyanin biosynthesis in rice remains largely unknown. In this study, a novel allele of chromogen gene C, OrC1, from Oryza rufipongon was cloned and identified as a determinant regulator of anthocyanin biosynthesis. Although OrC1 functions in purple apiculus, leaf sheath and stigma in indica background, it only promotes purple apiculus in japonica. Transcriptome analysis revealed that OrC1 regulates flavonoid biosynthesis pathway and activates a few bHLH and WD40 genes of ternary MYB-bHLH-WD40 complex in indica. Differentially expressed genes and metabolites were found in the indica and japonica backgrounds, indicating that OrC1 activated the anthocyanin biosynthetic genes OsCHI, OsF3H and OsANS and produced six metabolites independently. Artificial selection and domestication of C1 gene in rice occurred on the coding region in the two subspecies independently. Our results reveal the regulatory system and domestication of C1, provide new insights into MYB transcript factor involved in anthocyanin biosynthesis, and show the potential of engineering anthocyanin biosynthesis in rice.


Asunto(s)
Antocianinas/biosíntesis , Regulación de la Expresión Génica de las Plantas , Metaboloma , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Compuestos Cromogénicos/metabolismo , Perfilación de la Expresión Génica , Oryza/clasificación , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo
12.
Ann Clin Microbiol Antimicrob ; 20(1): 71, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34598679

RESUMEN

BACKGROUND: Corynebacterium striatum was confirmed to be an important opportunistic pathogen, which could lead to multiple-site infections and presented high prevalence of multidrug resistance, particularly to quinolone antibiotics. This study aimed to investigate the mechanism underlying resistance to quinolones and the epidemiological features of 410 quinolone-resistant C. striatum clinical strains isolated from three tertiary hospitals in China. METHODS: A total of 410 C. striatum clinical strains were isolated from different clinical samples of patients admitted to three tertiary teaching hospitals in China. Antibiotic susceptibility testing was performed using the microdilution broth method and pulsed-field gel electrophoresis (PFGE) was used for genotyping. Gene sequencing was used to identify possible mutations in the quinolone resistance-determining regions (QRDRs) of gyrA. RESULTS: In total, 410 C. striatum isolates were sensitive to vancomycin, linezolid, and daptomycin but resistant to ciprofloxacin. Depending on the antibiotic susceptibility testing results of 12 antimicrobial agents, the 410 C. striatum strains were classified into 12 resistant biotypes; of these, the three biotypes R1, R2, and R3 were dominant and accounted for 47.3% (194/410), 21.0% (86/410), and 23.2% (95/410) of the resistant biotypes, respectively. Mutations in the QRDRs ofgyrA were detected in all quinolone-resistant C. striatum isolates, and 97.3% of the isolates (399/410) showed double mutations in codons 87 and 91 of the QRDRs of gyrA. Ser-87 to Phe-87 and Asp-91 to Ala-91 double mutation in C. striatum was the most prevalent and accounted for 72.2% (296/410) of all mutations. Four new mutations in gyrA were identified in this study; these included Ser-87 to Tyr-87 and Asp-91 to Ala-91 (double mutation, 101 isolates); Ser-87 to Val-87 and Asp-91 toGly-91 (double mutation, one isolate); Ser-87 to Val-87 and Asp-91 to Ala-91 (double mutation, one isolate); and Ser-87 to Ile-87 (single mutation, one isolate). The minimum inhibitory concentration of ciprofloxacin for isolates with double (96.5%; 385/399) and single (72.7%; 8/11) mutations was high (≥ 32 µg/mL). Based on the PFGE typing results, 101 randomly selected C. striatum strains were classified into 50 genotypes (T01-T50), including the three multidrug-resistant epidemic clones T02, T06, and T28; these accounted for 14.9% (15/101), 5.9% (6/101), and 11.9% (12/101) of all genotypes, respectively. The multidrug-resistant T02 clone was identified in hospitals A and C and persisted from 2016 to 2018. Three outbreaks resulting from the T02, T06, and T28 clones were observed among intensive care unit (ICU) patients in hospital C between April and May 2019. CONCLUSIONS: Quinolone-resistant C. striatum isolates showed a high prevalence of multidrug resistance. Point mutations in the QRDRs of gyrA conferred quinolone resistance to C. striatum, and several mutations in gyrA were newly found in this study. The great clonal diversity, high-level quinolone resistance and increased prevalence among patients susceptible to C. striatum isolates deserve more attention in the future. Moreover, more thorough investigation of the relationship between quinolone exposure and resistance evolution in C. striatum is necessary.


Asunto(s)
Antibacterianos/farmacología , Corynebacterium/efectos de los fármacos , Girasa de ADN/genética , Quinolonas/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Ciprofloxacina , Corynebacterium/genética , Corynebacterium/aislamiento & purificación , Infecciones por Corynebacterium , Infección Hospitalaria , Resistencia a Múltiples Medicamentos/genética , Femenino , Genotipo , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Mutación , Centros de Atención Terciaria
13.
J Nanobiotechnology ; 19(1): 200, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34225744

RESUMEN

BACKGROUND: Recent studies have demonstrated that multidrug resistance (MDR) is a critical factor in the low efficacy of cancer chemotherapy. The main mechanism of MDR arises from the overexpression of P-glycoprotein (P-gp), which actively enhances drug efflux and limits the effectiveness of chemotherapeutic agents. RESULTS: In this study, we fabricated a "combo" nanoagent equipping with triple synergistic strategies for enhancing antitumor efficacy against MDR cells. Tumor homing-penetrating peptide endows the nanosystem with targeting and penetrating capabilities in the first stage of tumor internalization. The abundant amine groups of polyethylenimine (PEI)-modified nanoparticles then trigger a proton sponge effect to promote endo/lysosomal escape, which enhances the intracellular accumulation and retention of anticancer drugs. Furthermore, copper tetrakis(4-carboxyphenyl)porphyrin (CuTCPP) encapsulated in the nanosystem, effectively scavenges endogenous glutathione (GSH) to reduce the detoxification mediated by GSH and sensitize the cancer cells to drugs, while simultaneously serving as a photoacoustic imaging (PAI) contrast agent for image visualization. Moreover, we also verify that these versatile nanoparticles in combination with PD-1/PD-L1 blockade therapy can not only activate immunological responses but also inhibit P-gp expression to obliterate primary and metastatic tumors. CONCLUSION: This work shows a significant enhancement in therapeutic efficacy against MDR cells and syngeneic tumors by using multiple MDR reversing strategies compared to an equivalent dose of free paclitaxel.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/farmacología , Nanopartículas/uso terapéutico , Animales , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Cobre , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Quimioterapia , Femenino , Compuestos Heterocíclicos , Humanos , Lisosomas , Células MCF-7 , Metaloporfirinas , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanomedicina , Nanopartículas/química , Compuestos Organofosforados , Paclitaxel/farmacología
14.
BMC Genet ; 21(1): 62, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32527215

RESUMEN

BACKGROUND: The exploitation of novel alleles from wild rice that were lost during rice cultivation could be very important for rice breeding and evolutionary studies. Plant height (PH) was a target of artificial selection during rice domestication and is still a target of modern breeding. The "green revolution" gene semi-dwarf 1 (SD1) were well documented and used in the past decades, allele from wild rice could provide new insights into the functions and evolution of this gene. RESULTS: We identified a PH-related quantitative trait locus, qCL1.2,from wild riceusing a set of chromosome segment substitution lines. qCL1.2encodesa novel allele of SD1 gene. The wild allele of SD1 is a dominant locus that can significantly promote rice internode length by regulating the expression levels of genes involved in gibberellin biosynthesis and signal transduction. Nucleotide diversity and haplotype network analyses of the SD1 gene were performed using 2822 rice landraces. Two previously reported functional nucleotide polymorphisms clearly differentiated japonica and indica rice; however, they were not associated with PH selection. Other new functional nucleotide polymorphisms in the coding, but not promoter, regions were involved in PH selection during rice domestication. Our study increasesunderstanding of the rice SD1 gene and provides additional evidence of this gene's selection during rice domestication. CONCLUSIONS: Our findings provide evidence thatSD1 gene from wild rice enhances plant height and new functional nucleotide polymorphisms of this gene were artificially selected during cultivated rice differentiation.


Asunto(s)
Oryza/crecimiento & desarrollo , Oryza/genética , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Alelos , Haplotipos
15.
BMC Infect Dis ; 19(1): 791, 2019 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-31500570

RESUMEN

BACKGROUND: Infections by Streptococcus gallolyticus subsp. pasteurianus (SGSP) is often underestimated. Herein, the epidemiological features and resistant characteristics of SGSP in mainland China are characterized to enable a better understanding of its role in clinical infections. METHODS: In the present work, 45 SGSP isolates were collected from the samples of bloodstream, urine, aseptic body fluid, and fetal membrane/placenta from patients in 8 tertiary general hospitals of 6 cities/provinces in China from 2011 to 2017. The identification of all isolates was performed using traditional biochemical methods, 16S rRNA and gyrB sequencing, followed by the characterization of their antibiotic resistance profiling and involved genes. RESULTS: Among 34 non-pregnancy-related patients, 4 (4/34,11.8%) patients had gastrointestinal cancer, 10 (10/34, 29.4%) patients had diabetes, and one patient had infective endocarditis. Moreover, 11 cases of pregnant women were associated with intrauterine infection (9/11, 81.2%) and urinary tract infection (1/11, 9.1%), respectively. Except one, all other SGSP isolates were correctly identified by the BD Phoenix automated system. We found that all SGSP isolates were phenotypically susceptible to penicillin, ampicillin, cefotaxime, meropenem, and vancomycin. Forty strains (40/45, 88.9%) were both erythromycin and clindamycin-resistant, belonging to the cMLSB phenotype, and the majority of them carried erm(B) gene (39/40, 97.5%). Although the cMLSB/erm(B) constituted the most frequently identified phenotype/genotype combination (25/40, 62.5%) among all erythromycin-resistant cMLSB isolates, erm(B)/erm(A), erm(B)/mef(A/E), and erm(B)/erm(T) was detected in 7, 4, and 3 isolates, respectively. Furthermore, 43 strains (43/45, 95.6%) were tetracycline-resistant, and out of these, 39 strains (39/45, 86.7%) carried tet(L), 27(27/45, 60.0%) strains carried tet(O), and 7 (7/45, 15.6%) strains carried tet(M), alone or combined, respectively. All erythromycin-resistant isolates were also resistant to tetracycline. CONCLUSIONS: It is important to study and draw attention on SGSP, an underreported opportunistic pathogen targeting immunodeficient populations, notably elderly subjects, pregnant women and neonates.


Asunto(s)
Bacteriemia/patología , Infecciones Estreptocócicas/patología , Streptococcus gallolyticus/genética , Enfermedades Uterinas/patología , Adulto , Antibacterianos/farmacología , Bacteriemia/microbiología , Proteínas Bacterianas/genética , China , Farmacorresistencia Bacteriana/genética , Femenino , Humanos , Recién Nacido , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Fenotipo , Filogenia , Embarazo , ARN Ribosómico 16S/química , ARN Ribosómico 16S/aislamiento & purificación , ARN Ribosómico 16S/metabolismo , Infecciones Estreptocócicas/microbiología , Streptococcus gallolyticus/clasificación , Streptococcus gallolyticus/efectos de los fármacos , Streptococcus gallolyticus/aislamiento & purificación , Enfermedades Uterinas/microbiología , Adulto Joven
16.
Mol Ecol ; 27(1): 216-232, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29134709

RESUMEN

Understanding the genetic basis of the switch from asexual to sexual lifestyles in response to sometimes rapid environmental changes is one of the major challenges in fungal ecology. Light appears to play a critical role in the asexual-sexual switch-but fungal genomes harbour diverse light sensors. Fungal opsins are homologous to bacterial green-light-sensory rhodopsins, and their organismal functions in fungi have not been well understood. Three of these opsin-like proteins were widely distributed across fungal genomes, but homologs of the Fusarium opsin-like protein CarO were present only in plant-associated fungi. Key amino acids, including potential retinal binding sites, functionally diverged on the phylogeny of opsins. This diversification of opsin-like proteins could be correlated with life history-associated differences among fungi in their expression and function during morphological development. In Neurospora crassa and related species, knockout of the opsin NOP-1 led to a phenotype in the regulation of the asexual-sexual switch, modulating response to both light and oxygen conditions. Sexual development commenced early in ∆nop-1 strains cultured in unsealed plates under constant blue and white light. Furthermore, comparative transcriptomics showed that the expression of nop-1 is light-dependent and that the ∆nop-1 strain abundantly expresses genes involved in oxidative stress response, genes enriched in NAD/NADP binding sites, genes with functions in proton transmembrane movement and catalase activity, and genes involved in the homeostasis of protons. Based on these observations, we contend that light and oxidative stress regulate the switch via light-responsive and ROS pathways in model fungus N. crassa and other fungi.


Asunto(s)
Fenómenos Ecológicos y Ambientales , Proteínas Fúngicas/metabolismo , Luz , Neurospora crassa/fisiología , Opsinas/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Técnicas de Inactivación de Genes , Redes Reguladoras de Genes , Genes Fúngicos , Modelos Biológicos , Complejos Multienzimáticos/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Neurospora crassa/genética , Neurospora crassa/crecimiento & desarrollo , Neurospora crassa/efectos de la radiación , Oxidación-Reducción , Estrés Oxidativo/genética , Fenotipo , Filogenia , Estructura Secundaria de Proteína , Reproducción/efectos de la radiación , Regulación hacia Arriba/genética
17.
Genome ; 61(4): 233-240, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29193996

RESUMEN

Seed size is variable within many plant species, and understanding the underlying genetic factors can provide insights into mechanisms of local environmental adaptation. Here we make use of the abundant genomic and germplasm resources available for rice (Oryza sativa) to perform a large-scale genome-wide association study (GWAS) of grain width. Grain width varies widely within the crop and is also known to show climate-associated variation across populations of its wild progenitor. Using a filtered dataset of >1.9 million genome-wide SNPs in a sample of 570 cultivated and wild rice accessions, we performed GWAS with two complementary models, GLM and MLM. The models yielded 10 and 33 significant associations, respectively, and jointly yielded seven candidate locus regions, two of which have been previously identified. Analyses of nucleotide diversity and haplotype distributions at these loci revealed signatures of selection and patterns consistent with adaptive introgression of grain width alleles across rice variety groups. The results provide a 50% increase in the total number of rice grain width loci mapped to date and support a polygenic model whereby grain width is shaped by gene-by-environment interactions. These loci can potentially serve as candidates for studies of adaptive seed size variation in wild grass species.


Asunto(s)
Variación Genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo/métodos , Oryza/genética , Sitios de Carácter Cuantitativo/genética , Semillas/genética , Alelos , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Genes de Plantas/genética , Genotipo , Haplotipos , Desequilibrio de Ligamiento , Fenotipo , Polimorfismo de Nucleótido Simple
19.
Cell Mol Neurobiol ; 37(1): 111-120, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26913515

RESUMEN

The hepatic cytochrome P450 (CYP450) enzyme superfamily is one of the most important drug-metabolizing enzyme systems, which is responsible for the metabolism of a large number of clinically relevant medications used in traumatic brain injury (TBI) therapy. Modification of CYP450 expression may have important influences on drug metabolism and lead to untoward effects on those with narrow therapeutic windows. However, the impact of blast-induced TBI (bTBI) on the expression of CYP450 has received little attention. The subfamilies of CYP1A, 2B, 2D, and 3A account for about 85 % of all human drug metabolism of clinical significance. Therefore, in this study, we investigated the expressions of hepatic CYP1A2, CYP2B1, CYP2D1, and CYP3A2 in rats suffering bTBI. Meanwhile, we also measured some important cytokines in serum after injury, and calculated the correlation between these cytokines and the expressions of CYP1A2, CYP2B1, CYP2D1, and CYP3A2. The results showed that bTBI could significantly reduce mRNA expressions of CYP1A2, CYP2D1, and CYP3A2 at the early stage and induce the expressions from 48 h to 1 week after injury. The protein expressions of these CYP450s had all been downregulated from 24 to 48 h post- injury, and then began to elevate at 48 h after bTBI. The cytokines, IL-1ß, IL-2, IL-6, and TNF-α, increased significantly in the early phase, and began to reduce at the delayed phase of bTBI. The serum levels of IL-1ß, IL-6, and TNF-α but not IL-2 were significantly negative correlated with the mRNA expressions of CYP2B1 and CYP2D1 and the proteins expressions of CYP1A2, CYP2B1, CYP2D1, and CYP3A2. In conclusion, our work has, for the first time, indicated that bTBI has significant impact on the expressions of CYP1A2, CYP2B1, CYP2D1, and CYP3A2, which may be related to the cytokines induced by the injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo/enzimología , Citocromo P-450 CYP1A2/biosíntesis , Citocromo P-450 CYP2B1/biosíntesis , Citocromo P-450 CYP3A/biosíntesis , Familia 2 del Citocromo P450/biosíntesis , Hígado/enzimología , Animales , Lesiones Traumáticas del Encéfalo/patología , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP2B1/genética , Citocromo P-450 CYP3A/genética , Familia 2 del Citocromo P450/genética , Regulación Enzimológica de la Expresión Génica , Masculino , Microsomas Hepáticos/enzimología , Ratas , Ratas Sprague-Dawley
20.
J Integr Plant Biol ; 58(6): 540-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26220807

RESUMEN

Due to the remarkable adaptability to various environments, rice varieties with diverse flowering times have been domesticated or improved from Oryza rufipogon. Detailed knowledge of the genetic factors controlling flowering time will facilitate understanding the adaptation mechanism in cultivated rice and enable breeders to design appropriate genotypes for distinct preferences. In this study, four genes (Hd1, DTH8, Ghd7 and OsPRR37) in a rice long-day suppression pathway were collected and sequenced in 154, 74, 69 and 62 varieties of cultivated rice (Oryza sativa) respectively. Under long-day conditions, varieties with nonfunctional alleles flowered significantly earlier than those with functional alleles. However, the four genes have different genetic effects in the regulation of flowering time: Hd1 and OsPRR37 are major genes that generally regulate rice flowering time for all varieties, while DTH8 and Ghd7 only regulate regional rice varieties. Geographic analysis and network studies suggested that the nonfunctional alleles of these suppression loci with regional adaptability were derived recently and independently. Alleles with regional adaptability should be taken into consideration for genetic improvement. The rich genetic variations in these four genes, which adapt rice to different environments, provide the flexibility needed for breeding rice varieties with diverse flowering times.


Asunto(s)
Alelos , Flores/metabolismo , Flores/fisiología , Oryza/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genes Supresores/fisiología , Oryza/genética , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA