Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Plant Physiol ; 195(3): 1906-1924, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38497551

RESUMEN

Root hairs (RHs), extensive structures of root epidermal cells, are important for plant nutrient acquisition, soil anchorage, and environmental interactions. Excessive production of the phytohormone ethylene (ET) leads to substantial root hair growth, manifested as tolerance to plant nutrient deficiencies. However, the molecular basis of ET production during root hair growth in response to nutrient starvation remains unknown. Herein, we found that a critical transcription factor, GLABRA 2 (GL2), inhibits ET production during root hair growth in Arabidopsis (Arabidopsis thaliana). GL2 directly binds to the promoter of the gene encoding ET OVERPRODUCER 1 (ETO1), one of the most important ET-production-regulation factors, in vitro and in vivo, and then regulates the accumulation and function of ETO1 in root hair growth. The GL2-regulated-ETO1 module is required for promoting root hair growth under nitrogen, phosphorus, or potassium deficiency. Genome-wide analysis revealed numerous genes, such as ROOT HAIR DEFECTIVE 6-LIKE 4, ETHYLENE-INSENSITIVE 3-LIKE 2, ROOT HAIR SPECIFIC 13, are involved in the GL2-regulated-ETO1 module. Our work reveals a key transcription mechanism in the control of ET production during root hair growth under three major nutrient deficiencies.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Etilenos , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas , Factores de Transcripción , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Etilenos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regiones Promotoras Genéticas/genética , Nitrógeno/metabolismo , Nitrógeno/deficiencia , Nutrientes/metabolismo , Fósforo/deficiencia , Fósforo/metabolismo , Proteínas de Homeodominio
2.
Genomics ; 116(2): 110819, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38432498

RESUMEN

Long noncoding RNA (lncRNA) and microRNA (miRNA) are known to play pivotal roles in mammalian testicular function and spermatogenesis. However, their impact on porcine male reproduction has yet to be well unraveled. Here, we sequenced and identified lncRNA and miRNA expressed in the testes of Chinese indigenous Banna mini-pig inbred line (BMI) and introduced Western Duroc (DU) and Large White (LW) pigs. By pairwise comparison (BMI vs DU, BMI vs LW, and DU vs LW), we found the gene expression differences in the testes between Chinese local pigs and introduced Western commercial breeds were more striking than those between introduced commercial breeds. Furthermore, we found 1622 co-differentially expressed genes (co-DEGs), 122 co-differentially expressed lncRNAs (co-DELs), 39 co-differentially expressed miRNAs (co-DEMs) in BMI vs introduced commercial breeds (DU and LW). Functional analysis revealed that these co-DEGs and co-DELs/co-DEMs target genes were enriched in male sexual function pathways, including MAPK, AMPK, TGF-ß/Smad, Hippo, NF-kappa B, and PI3K/Akt signaling pathways. Additionally, we established 10,536 lncRNA-mRNA, 11,248 miRNA-mRNA pairs, and 62 ceRNA (lncRNA-miRNA-mRNA) networks. The ssc-miR-1343 had the most interactive factors in the ceRNA network, including 20 mRNAs and 3 lncRNAs, consisting of 56 ceRNA pairs. These factors played extremely important roles in the regulation of testis function as key nodes in the interactive regulatory network. Our results provide insight into the functional roles of lncRNAs and miRNAs in porcine testis and offer a valuable resource for understanding the differences between Chinese indigenous and introduced Western pigs.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Masculino , Porcinos/genética , Animales , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Testículo/metabolismo , Porcinos Enanos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Redes Reguladoras de Genes
3.
BMC Genomics ; 25(1): 470, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745141

RESUMEN

BACKGROUND: The absence of heterozygosity (AOH) is a kind of genomic change characterized by a long contiguous region of homozygous alleles in a chromosome, which may cause human genetic disorders. However, no method of low-pass whole genome sequencing (LP-WGS) has been reported for the detection of AOH in a low-pass setting of less than onefold. We developed a method, termed CNVseq-AOH, for predicting the absence of heterozygosity using LP-WGS with ultra-low sequencing data, which overcomes the sparse nature of typical LP-WGS data by combing population-based haplotype information, adjustable sliding windows, and recurrent neural network (RNN). We tested the feasibility of CNVseq-AOH for the detection of AOH in 409 cases (11 AOH regions for model training and 863 AOH regions for validation) from the 1000 Genomes Project (1KGP). AOH detection using CNVseq-AOH was also performed on 6 clinical cases with previously ascertained AOHs by whole exome sequencing (WES). RESULTS: Using SNP-based microarray results as reference (AOHs detected by CNVseq-AOH with at least a 50% overlap with the AOHs detected by chromosomal microarray analysis), 409 samples (863 AOH regions) in the 1KGP were used for concordant analysis. For 784 AOHs on autosomes and 79 AOHs on the X chromosome, CNVseq-AOH can predict AOHs with a concordant rate of 96.23% and 59.49% respectively based on the analysis of 0.1-fold LP-WGS data, which is far lower than the current standard in the field. Using 0.1-fold LP-WGS data, CNVseq-AOH revealed 5 additional AOHs (larger than 10 Mb in size) in the 409 samples. We further analyzed AOHs larger than 10 Mb, which is recommended for reporting the possibility of UPD. For the 291 AOH regions larger than 10 Mb, CNVseq-AOH can predict AOHs with a concordant rate of 99.66% with only 0.1-fold LP-WGS data. In the 6 clinical cases, CNVseq-AOH revealed all 15 known AOH regions. CONCLUSIONS: Here we reported a method for analyzing LP-WGS data to accurately identify regions of AOH, which possesses great potential to improve genetic testing of AOH.


Asunto(s)
Pérdida de Heterocigocidad , Redes Neurales de la Computación , Secuenciación Completa del Genoma , Humanos , Secuenciación Completa del Genoma/métodos , Polimorfismo de Nucleótido Simple , Genoma Humano
4.
J Am Chem Soc ; 146(6): 4162-4171, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38306246

RESUMEN

Magnesium is an abundant metal element in space, and magnesium chemistry has vital importance in the evolution of interstellar medium (ISM) and circumstellar regions, such as the asymptotic giant branch star IRC+10216 where a variety of Mg compounds bearing H, C, N, and O have been detected and proposed as the important components in the gas-phase molecular clouds and solid-state dust grains. Herein, we report the formation and infrared spectroscopic characterization of the Mg-bearing molecules HMg, [Mg, N, C], [Mg, H, N, C], [Mg, N, C, O], and [Mg, H, N, C, O] from the reactions of Mg/Mg+ and the prebiotic isocyanic acid (HNCO) in the solid neon matrix. Based on their thermal diffusion and photochemical behavior, a complex reactivity landscape involving association, decomposition, and isomerization reactions of these Mg-bearing molecules is developed, which can not only help understand the chemical processes of the magnesium (iso)cyanides in astrochemistry but also provide implications on the presence of magnesium (iso)cyanates in the ISM and the chemical model for the dust grain surface reactions. It also provides a new paradigm of the key intermediate nature of the cationic complexes in the formation of neutral interstellar species.

5.
J Am Chem Soc ; 146(27): 18699-18705, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38943601

RESUMEN

Carbonyl nitrenes are versatile intermediates that have been extensively characterized; however, their phosphorus analogues remain largely unknown. Herein, we report the observation of a rare example of carbonyl phosphinidene NH2C(O)P, which was generated through the photolytic (193 nm) dehydrogenation of phosphinecarboxamide (NH2C(O)PH2) in a solid N2-matrix at 12 K. The characterization of NH2C(O)P in the triplet ground state with matrix-isolation IR and ultraviolet-visible (UV-vis) spectroscopy is supported by comprehensive isotope labeling experiments (D and 15N) and quantum chemical calculations. Upon visible-light irradiation at 680 nm, NH2C(O)P inserts into dihydrogen by the reformation of NH2C(O)PH2 with concomitant isomerization to the more stable aminophosphaketene (NH2PCO). Additionally, the photoisomerization of NH2C(O)PH2 to NH2C(OH) = PH along with decomposition by yielding hydrogen-bonded complexes HNCO···PH3 and HPCO···NH3 has been observed in the matrix.

6.
J Am Chem Soc ; 146(29): 20494-20499, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39001838

RESUMEN

The photochemistry of nitrous acid (HONO), encompassing dissociation into OH and NO as well as the reverse association reaction, plays a pivotal role in atmospheric chemistry. Here, we report the direct observation of nitrosyl-O-hydroxide (HOON) in the photochemistry of HONO, employing matrix-isolation IR and UV-vis spectroscopy. Despite a barrier of approximately 30 kJ/mol, HOON undergoes spontaneous rearrangement to the more stable HONO isomer through quantum mechanical tunneling, with a half-life of 28 min at 4 K. Kinetic isotope effects and instanton theory calculations reveal that the tunneling process involves the concerted motion of the NO moiety (65.2%) and the hydrogen atom (32.3%). Our findings underscore the significance of HOON as a key intermediate in the photolytic dissociation-association cycle of HONO at low temperatures.

7.
Anal Chem ; 96(27): 10911-10919, 2024 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-38916969

RESUMEN

The integration of electrochemistry with nuclear magnetic resonance (NMR) spectroscopy recently offers a powerful approach to understanding oxidative metabolism, detecting reactive intermediates, and predicting biological activities. This combination is particularly effective as electrochemical methods provide excellent mimics of metabolic processes, while NMR spectroscopy offers precise chemical analysis. NMR is already widely utilized in the quality control of pharmaceuticals, foods, and additives and in metabolomic studies. However, the introduction of additional and external connections into the magnet has posed challenges, leading to signal deterioration and limitations in routine measurements. Herein, we report an anti-interference compact in situ electrochemical NMR system (AICISENS). Through a wireless strategy, the compact design allows for the independent and stable operation of electrochemical NMR components with effective interference isolation. Thus, it opens an avenue toward easy integration into in situ platforms, applicable not only to laboratory settings but also to fieldwork. The operability, reliability, and versatility were validated with a series of biomimetic assessments, including measurements of microbial electrochemical systems, functional foods, and simulated drug metabolisms. The robust performance of AICISENS demonstrates its high potential as a powerful analytical tool across diverse applications.


Asunto(s)
Técnicas Electroquímicas , Espectroscopía de Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , Tecnología Inalámbrica
8.
Biochem Biophys Res Commun ; 735: 150428, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39094231

RESUMEN

Primary ciliary dyskinesia (PCD) is a group of genetically heterogeneous disorders characterized by clinical manifestations resulting from abnormal ciliary motility. Mutations in critical genes, such as Cyclin O (CCNO), have been associated with severe respiratory disease, though limited data are currently available. Here we show that CCNO deficient ciliated cells can only form a reduced number of fully functional centrioles that can mature into ciliated basal bodies, and their transport and anchoring to the top of the plasma membrane are abnormal. Furthermore, we observed that CCNO localizes not only in the cytoplasm but also in the nucleus during the early stages of ciliogenesis, and this dual localization persists into adulthood. Transcriptome analysis revealed downregulation of genes involved in cilia assembly and movement, along with altered transcription factors associated with ciliation upon CCNO depletion. These findings indicate that CCNO may serve as a key regulator in the transcriptional regulation of multiciliogenesis.

9.
Toxicol Appl Pharmacol ; 486: 116938, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642809

RESUMEN

Drug resistance is a serious problem for gefitinib in the treatment of lung cancer. Ginsenoside CK, a metabolite of diol ginsenosides, have many excellent pharmacological activities, but whether ginsenoside CK can overcome gefitinib resistance remains unclear. In our study, the sensitizing activity of ginsenoside CK on gefitinib-resistant non-small cell lung cancer (NSCLC) in vitro and in vivo was investigated. Ginsenoside CK was confirmed to enhance the anti-proliferation, pro-apoptotic and anti-migration effects of gefitinib in primary and acquired resistant NSCLC. Furthermore, the combined administration of CK and gefitinib effectively promoted the sensitivity of lung cancer xenograft to gefitinib in vivo, and the tumor inhibition rate reached 70.97% (vs. gefitinib monotherapy 32.65%). Subsequently, tubule formation experiment and western blot results showed that co-treatment of ginsenoside CK inhibited the angiogenesis ability of HUVEC cells, and inhibited the expression of HIF-1α, VEGF, FGF and MMP2/9. More interestingly, ginsenoside CK co-treatment enhanced the expression of anti-angiogenic factor PF4, increased pericellular envelope, and promoted the normalization of vascular structure. In conclusion, ginsenoside CK improved the resistance of gefitinib by regulating the balance of angiogenic factors through down-regulating the HIF-1α/VEGF signaling pathway, providing a theoretical basis for improving the clinical efficacy of gefitinib and applying combined strategies to overcome drug resistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Gefitinib , Ginsenósidos , Células Endoteliales de la Vena Umbilical Humana , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neoplasias Pulmonares , Ratones Desnudos , Factor A de Crecimiento Endotelial Vascular , Gefitinib/farmacología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ginsenósidos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Animales , Resistencia a Antineoplásicos/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos/farmacología , Ratones , Ratones Endogámicos BALB C , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células A549 , Neovascularización Patológica/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Femenino
10.
Chemistry ; 30(39): e202401397, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38709557

RESUMEN

Aluminium is one of the most abundant metals in the universe and impacts the evolution of various astrophysical environments. Currently detected Al-bearing molecules represent only a small fraction of the aluminium budget, suggesting that aluminium may reside in other species. AlO and AlOH molecules are abundant in the oxygen-rich supergiant stars such as VY Canis Majoris, a stellar molecular factory with 60+ molecules including the prebiotic NC-bearing species. Additional Al-bearing molecules with N, C, O, and H may form in O-rich environments with radiation-accelerated chemistry. Here, we present spectroscopic identification of novel aluminium-bearing molecules composed of [Al, N, C, O, H] and [Al, N, C, O] from the reactions of Al atoms and HNCO in solid argon matrix, which are potential Al-bearing molecules in space. Photoinduced transformations among six [Al, N, C, O, H] isomers and three [Al, N, C, O] isomers, along with their dissociation reactions forming the known interstellar species, have been disclosed. These results provide new insight into the chemical network of astronomically detected Al-bearing species in space.

11.
BMC Cancer ; 24(1): 153, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291354

RESUMEN

BACKGROUND: Neoadjuvant immune checkpoint inhibitors(ICIs) combined with chemotherapy can improve non-small cell lung cancer(NSCLC) patients' pathological responses and show promising improvements in survival. Chronic obstructive pulmonary disease (COPD) is a systemic inflammatory disease, and its associated abnormal inflammatory response affects not only the immunotherapy efficacy but also immune-related adverse events. It remains unclear whether NSCLC patients with COPD can benefit from neoadjuvant ICIs combined with chemotherapy. METHODS: A retrospective observational clinical study was conducted on 105 consecutive NSCLC patients receiving neoadjuvant ICIs combined with chemotherapy at the Department of Thoracic Surgery of Tianjin Chest Hospital between April 2020 and April 2023. RESULTS: A total of 74 NSCLC patients were included in the study, including 30 patients with COPD and 44 patients without COPD. The percentage of patients with a pathological complete response (PCR) was higher in the COPD group than in the non-COPD group (43.3% vs. 20.5%, P = 0.042). Multivariate logistic regression analysis of factors associated with PCR showed that the adjusted odds ratio (OR) was statistically significant for presence of COPD (OR = 3.020, 95%CI: 1.042-8.757; P = 0.042). Major pathological response (66.7% vs. 50%, P = 0.155), R0 resection rate (96.7% vs.93.2%, P = 0.642), N2 lymph node downstaging(92.3% vs. 66.7%, P = 0.182) and objective response rate (70% vs. 63.6%, P = 0.57) were not significantly different between the groups. Progression-free survival(PFS) was not reached in the COPD group and 17 months (95%CI: 12.1-21.9) in the non-COPD group, with statistically significance (χ2 = 6.247, P = 0.012). Multivariate Cox's regression analysis showed that the adjusted hazard ratio (HRadj) was statistically significant for presence of COPD (HRadj = 0.321, 95%CI: 0.111-0.930; P = 0.036). The grade 3 and grade 4 adverse events in the COPD group were leukopenia (3.3%, 6.7%), neutropenia (3.3%, 6.7%), fatigue (6.7%, 0%), gastrointestinal reactions (3.3%, 0%), and hypothyroidism (3.3%, 0%). In the non-COPD group, the corresponding adverse events were leukopenia (6.8%, 6.8%), neutropenia (3.3%, 6.8%), fatigue (2.3%, 0%), gastrointestinal reactions (2.3%, 0%), and hypothyroidism (2.3%, 0%), respectively. CONCLUSIONS: The present study indicates that the presence of COPD may improve PCR, prolong PFS, and have an acceptable safety profile in NSCLC patients receiving neoadjuvant ICIs combined with chemotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Hipotiroidismo , Neoplasias Pulmonares , Neutropenia , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Neoplasias Pulmonares/tratamiento farmacológico , Terapia Neoadyuvante , Estudios Retrospectivos , Fatiga , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico
12.
Physiol Plant ; 176(4): e14429, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39039026

RESUMEN

Cytoplasmic male sterility (CMS) is a very important factor to produce hybrid seeds, and the restoration of fertility involves the expression of many fertility-related genes. Our previous study showed that the expression of CaPIPLC5 was significantly up-regulated in pepper restorer accessions and minimally expressed in sterile accessions, speculating that CaPIPLC5 is related to the restoration of fertility. In this study, we further validated the function of CaPIPLC5 in the restoration of fertility. The results showed that CaPIPLC5 was specifically expressed in the anthers of the restorer accessions with the subcellular localization in the cytoplasm. Furthermore, the expression of CaPIPLC5 was significantly higher in restorer lines and restorer combinations than that in CMS lines and their maintainer lines. Silencing CaPIPLC5 led to the number of pollen decreased, pollen grains wrinkled, and the ratio of pollen germination reduced. In addition, the joint analysis of Yeast One-Hybrid (Y1H) and Dual-Luciferase (dual-LUC) assays suggested that transcription factors such as CaARF5, CabZIP24 and CaMYB-like1, interacted with the promoter regions of CaPIPLC5, which regulated the expression of CaPIPLC5. The present results provide new insights into the study of CaPIPLC5 involved in the restoration of fertility in pepper.


Asunto(s)
Capsicum , Regulación de la Expresión Génica de las Plantas , Infertilidad Vegetal , Proteínas de Plantas , Polen , Capsicum/genética , Capsicum/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Infertilidad Vegetal/genética , Polen/genética , Polen/fisiología , Fertilidad/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Environ Sci Technol ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145585

RESUMEN

Poor air quality is increasingly linked to gastrointestinal diseases, suggesting a potential correlation with human intestine health. However, this relationship remains largely unexplored due to limited research. This study used a controlled mouse model exposed to cooking oil fumes (COFs) and metagenomics, transcriptomics, and metabolomics to elucidate interactions between intestine microbiota and host metabolism under environmental stress. Our findings reveal that short-term COF inhalation induces pulmonary inflammation within 3 days and leads to gastrointestinal disturbances, elucidating a pathway connecting respiratory exposure to intestinal dysfunction. The exposure intensity significantly correlates with changes in intestinal tissue integrity, microbial composition, and metabolic function. Extended exposure of 7 days disrupts intestine microbiota and alters tryptophan metabolism, with further changes observed after 14 days, highlighting an adaptive response. These results highlight the vulnerability of intestinal health to airborne pollutants and suggest a pathway through which inhaled pollutants may affect distant organ systems.

14.
Environ Sci Technol ; 58(16): 7099-7112, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38536960

RESUMEN

Reduced nitrogen-containing organic compounds (NOCs) in aerosols play a crucial role in altering their light-absorption properties, thereby impacting regional haze and climate. Due to the low concentration levels of individual NOCs in the air, the utilization of accurate detection and quantification technologies becomes essential. For the first time, this study investigated the diurnal variation, chemical characteristics, and potential formation pathways of NOCs in urban ambient aerosols in Shanghai using a versatile aerosol concentration enrichment system (VACES) coupled with HPLC-Q-TOF-MS. The results showed that NOCs accounted over 60% of identified components of urban organic aerosols, with O/N < 3 compounds being the major contributors (>70%). The predominance of the positive ionization mode suggested the prevalence of reduced NOCs. Higher relative intensities and number fractions of NOCs were observed during nighttime, while CHO compounds showed an opposite trend. Notably, a positive correlation between the intensity of NOCs and ammonium during the nighttime was observed, suggesting that the reaction of ammonium to form imines may be a potential pathway for the formation of reduced NOCs during the nighttime. Seven prevalent types of reduced NOCs in autumn and winter were identified and characterized by an enrichment of CH2 long-chain homologues. These NOCs included alkyl, cyclic, and aromatic amides in CHON compounds, as well as heterocyclic or cyclic amines and aniline homologue series in CHN compounds, which were associated with anthropogenic activities and may be capable of forming light-absorbing chromophores or posing harm to human health. The findings highlight the significant contributions of both primary emissions and ammonium chemistry, particularly amination processes, to the pollution of reduced NOCs in Shanghai's atmosphere.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Atmósfera , China , Atmósfera/química , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos/análisis , Monitoreo del Ambiente , Nitrógeno/análisis
15.
Environ Sci Technol ; 58(3): 1462-1472, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38155590

RESUMEN

The 2021 WHO guidelines stress the importance of measuring ultrafine particles using particle number concentration (PNC) for health assessments. However, commonly used particle metrics such as aerodynamic diameter and number concentrations do not fully capture the diverse chemical makeup of complex particles. To address this issue, our study used high-throughput mass spectrometry to analyze the properties of cooking oil fumes (COFs) in real time and evaluate their impact on BEAS-2B cell metabolism. Results showed insignificant differences in COF number size distributions between soybean oil and olive oil (peak concentrations of 5.20 × 105/cm3), as well as between corn oil and peanut oil (peak concentrations of 4.35 × 105/cm3). Despite the similar major chemical components among the four COFs, variations in metabolic damage were observed, indicating that the relatively small amount of chemical components of COFs can also influence particle behavior within the respiratory system, thereby impacting biological responses. Additionally, interactions between accompanying gaseous COFs and particles may alter their chemical composition through various mechanisms, introducing additional chemicals and modifying existing proportions. Hence, the chemical composition and gaseous components of COFs hold equal importance to the particle number concentration (PNC) when assessing their impact on human health. The absence of these considerations in the current guidelines underscores a research gap. It is imperative to acknowledge that for a more comprehensive approach to safeguarding public health, guidelines must be regularly updated to reflect new scientific findings and robust epidemiological evidence.


Asunto(s)
Aceites , Material Particulado , Humanos , Material Particulado/análisis , Culinaria/métodos , Gases/análisis , Alimentos
16.
Artículo en Inglés | MEDLINE | ID: mdl-38485814

RESUMEN

Major depressive disorder (MDD) and obesity are two serious public health problems. Although there have been some research on both, there have few studies on differences in obesity among MDD patients at different ages of onset. The study aims to evaluate the prevalence and factors associated with obesity in MDD patients at different ages of onset. This study totally recruited 1718 first-episode drug-naive MDD patients aged from 18 to 60 years. All subjects were divided into two subgroups: early adulthood onset (EAO, 18-45 years) and mid-adulthood onset (MAO, 45-60 years). Clinical symptoms of patients were evaluated using the 17-item Hamilton Depression Rating Scale (HAMD-17), Hamilton Anxiety Scale (HAMA), and Positive and Negative Syndrome Scale (PANSS) positive subscale. Baseline parameters including body mass index (BMI), blood pressure, and hematological biochemical parameters were assessed to investigate the association between these parameters and weight gain risk. The percentages of overweight and obesity patients with MDD in EAO group were 54.4% and 4.1%, respectively, and the percentages of overweight and obesity patients with MDD in MAO group were 60.4% and 2.8%, respectively. MDD patients in the MAO group had a longer duration of illness and higher scores in HAMD, HAMA, and PANSS positive subscale. They also had higher levels of thyroid stimulating hormone (TSH), anti-thyroglobulin (TgAb), fasting blood glucose (FBG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), systolic and diastolic blood pressures (SBP and DBP) levels. BMI did not differ significantly between the two groups. In the EAO group, statistically significant differences were found among normal weight, overweight and obese group in duration of illness, age of onset, TSH, TgAb, thyroid peroxidase antibody (TPOAb), free thyroxine (FT4), TC, triglycerides (TG), SBP and DBP. The TSH, TgTb and SBP were identified as risk factors for weight gain. In the MAO group, statistically significant differences were found among normal weight, overweight and obese group in TSH and FBG. The two indicators were identified as risk factors for weight gain. There were no significant differences in the weight of MDD patients at different ages of onset, while the factors that could potentially lead to obesity did show some differences.

17.
Acta Pharmacol Sin ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112770

RESUMEN

Cyclic GMP-AMP synthase (cGAS) is a major cytosolic DNA sensor that plays a significant role in innate immunity. Upon binding to double stranded DNA (dsDNA), cGAS utilizes GTP and ATP to synthesize the second messenger cyclic GMP-AMP (cGAMP). The cGAMP then binds to the adapter protein stimulator of interferon genes (STING) in the endoplasmic reticulum, resulting in the activation of the transcription factor interferon regulatory factor 3 (IRF3) and subsequent induction of type I interferon. An important question is how cGAS distinguishes between self and non-self DNA. While cGAS binds to the phosphate backbone of DNA without discrimination, its activation is influenced by physical features such as DNA length, inter-DNA distance, and mechanical flexibility. This suggests that the recognition of DNA by cGAS may depend on these physical features. In this article we summarize the recent progress in research on cGAS-STING pathway involved in antiviral defense, cellular senescence and anti-tumor response, and focus on DNA recognition mechanisms based on the physical features.

18.
Support Care Cancer ; 32(7): 483, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958751

RESUMEN

OBJECTIVES: Post-traumatic growth can improve the quality of life of cancer survivors. The objective of this study was to investigate post-traumatic growth heterogeneity trajectory in perioperative gastric cancer survivors, and to identify characteristics that predict membership for each trajectory. METHODS: Gastric cancer survivors (n = 403) were recruited before surgery, their baseline assessment (including post-traumatic growth and related characteristics) was completed, and post-traumatic growth levels were followed up on the day they left the intensive care unit, at discharge, and 1 month after discharge. Latent growth mixture mode was used to identify the heterogeneous trajectory of post-traumatic growth, and the core predictors of trajectory subtypes were explored using a decision tree model. RESULTS: Three post-traumatic growth development trajectories were identified among gastric cancer survivors: stable high of PTG group (20.6%), fluctuation of PTG group (44.4%), persistent low of PTG group (35.0%). The decision tree model showed anxiety, coping style, and psychological resilience-which was the primary predictor-might be used to predict the PTG trajectory subtypes of gastric cancer survivors. CONCLUSIONS: There was considerable variability in the experience of post-traumatic growth among gastric cancer survivors. Recognition of high-risk gastric cancer survivors who fall into the fluctuation or persistent low of PTG group and provision of psychological resilience-centered support might allow medical professionals to improve patients' post-traumatic growth and mitigate the impact of negative outcomes.


Asunto(s)
Supervivientes de Cáncer , Crecimiento Psicológico Postraumático , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/psicología , Masculino , Femenino , Supervivientes de Cáncer/psicología , Persona de Mediana Edad , Estudios Longitudinales , Anciano , Adulto , Calidad de Vida , Adaptación Psicológica , Resiliencia Psicológica , Ansiedad/etiología , Árboles de Decisión
19.
J Chem Phys ; 160(1)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38180256

RESUMEN

To cope with the shuttling of soluble lithium polysulfides in lithium-sulfur batteries, confinement tactics, such as trapping of sulfur within porous carbon structures, have been extensively studied. Although performance has improved a bit, the slow polysulfide conversion inducing fast capacity decay remains a big challenge. Herein, a NiS2/carbon (NiS2/C) composite with NiS2 nanoparticles embedded in a thin layer of carbon over the surface of micro-sized hollow structures has been prepared from Ni-metal-organic frameworks. These unique structures can physically entrap sulfur species and also influence their redox conversion kinetics. By improving the reaction kinetics of polysulfides, the NiS2/carbon@sulfur (NiS2/C@S) composite cathode with a suppressed shuttle effect shows a high columbic efficiency and decent rate performance. An initial capacity of 900 mAh g-1 at the rate of 1 C (1 C = 1675 mA g-1) and a low-capacity decline rate of 0.132% per cycle after 500 cycles are obtained, suggesting that this work provides a rational design of a sulfur cathode.

20.
Cell Biochem Funct ; 42(2): e3937, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38329451

RESUMEN

The antiobesity effect of conjugated linoleic acid (CLA) has been reported. However, the underlying mechanisms have not been fully clarified. Thus, this study aimed to investigate the effects of CLA on thermogenesis of interscapular brown adipose tissue (iBAT) and browning of inguinal subcutaneous white adipose tissue (iWAT) and explore the possible signaling pathway. The in vivo results showed that CLA enhanced the O2 consumption and heat production in HFD (high-fat diet)-fed female mice by roughly 38%. Meanwhile, CLA increased the average iBAT temperature by 2°C at the room temperature and cold exposure, respectively. Correspondingly, CLA caused 1.6- and 2.4-fold increases in the expression of UCP1 (uncoupling protein 1) of BAT and iWAT, respectively, suggesting the activated iBAT thermogenesis and iWAT browning in HFD-fed female mice. Meanwhile, CLA could promote the formation of brown and beige adipocytes in differentiated stromal vascular cells (SVCs) isolated from iBAT and iWAT (the expressions of UCP1 were promoted by about twofold changes). In possible mechanisms, CLA stimulated the expression of CD36 and the activation of the AMPK pathway in mice iBAT and iWAT as well as the differentiated SVCs. However, inhibition of CD36 and AMPK (adenosine 5'-monophosphate-activated protein kinase) abolished the promotive effects of CLA on brown and beige adipocytes formation. Hence, we showed that CLA reduced HFD-induced obesity through enhancing iBAT thermogenesis and iWAT browning via the  CD36-AMPK pathway.


Asunto(s)
Adipocitos Beige , Ácidos Linoleicos Conjugados , Femenino , Animales , Ratones , Ácidos Linoleicos Conjugados/farmacología , Proteínas Quinasas Activadas por AMP , Obesidad/tratamiento farmacológico , Termogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA