Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Pharm ; 19(11): 4123-4134, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36070496

RESUMEN

Liposomes have been widely used as a drug delivery vector. One way to further improve its therapeutic efficacy is to increase the cell entry efficiency. Covalent conjugation with cell-penetrating peptides (CPPs) and other types of ligands has been the mainstream strategy to tackle this issue. Although efficient, it requires additional chemical modifications on liposomes, which is undesirable for clinical translation. Our previous study showed that the transportan (TP) peptide, an amphiphilic CPP, was able to increase the cellular uptake of co-administered, but not covalently coupled, metallic nanoparticles (NPs). Termed bystander uptake, this process represents a simpler method to increase the cell entry of NPs without chemical modifications. Here, we extended our efforts to liposomes. Our results showed that co-administration with the TP peptide improved the internalization of liposome into a variety of cell lines in vitro. This effect was also observed in primary cells, ex vivo tumor slices, and in vivo tumor tissues. On the other hand, this peptide-assisted liposome internalization did not apply to cationic CPPs, which were the main inducers for bystander uptake in previous studies. We also found that TP-assisted bystander uptake of liposome is receptor dependent, and its activity is more sensitive to the inhibitors of the macropinocytosis pathway, underlining the potential cell entry mechanism. Overall, our study provides a simple strategy based on TP co-administration to increase the cell entry of liposomes, which may open up new avenues to apply TP peptides in nanotherapeutics.


Asunto(s)
Péptidos de Penetración Celular , Liposomas , Venenos de Avispas , Galanina , Sistemas de Liberación de Medicamentos
2.
Orthop Surg ; 15(11): 2749-2765, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37620876

RESUMEN

Osteoarthritis (OA) causes disability and significant economic and social burden. Cartilage injury is one of the main pathological features of OA, and is often manifested by excessive chondrocyte death, inflammatory response, abnormal bone metabolism, imbalance of extracellular matrix (ECM) metabolism, and abnormal vascular or nerve growth. Regrettably, due to the avascular nature of cartilage, its capacity to repair is notably limited. Mesenchymal stem cells-derived extracellular vesicles (MSCs-EVs) play a pivotal role in intercellular communication, presenting promising potential not only as early diagnostic biomarkers in OA but also as efficacious therapeutic strategy. MSCs-EVs were confirmed to play a therapeutic role in the pathological process of cartilage injury mentioned above. This paper comprehensively provides the functions and mechanisms of MSCs-EVs in cartilage repair.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Osteoartritis , Humanos , Osteoartritis/metabolismo , Cartílago/metabolismo , Condrocitos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología
3.
Front Oncol ; 12: 791332, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903698

RESUMEN

N6-methyladenosine (m6A) is the most abundant internal modification on eukaryotic mRNAs. There is increasing evidence that m6A plays a key role in tumor progression, so it is important to analyze m6A modifications within the transcriptome-wide in lung adenocarcinoma (LUAD). Three pairs of LUAD samples and tumor-adjacent normal tissues were obtained from the South University of Science and Technology Hospital. And then methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were used to identify differential m6A modifications between tumor and tumor-adjacent normal tissues. We identified 4041 aberrant m6A peaks, of which 1192 m6A peaks were upregulated and 2849 m6A peaks downregulated. It was found that genes with the dysregulated m6A peaks were enriched in the pathways in cancer, Rap1 signaling pathway, and insulin resistance. Additionally, 612 genes with abnormal regulation of m6A peaks and RNA expression were identified by combining MeRIP-seq and RNA-seq data. Through KEGG analysis, the 612 genes were enriched in cancer-related signaling pathways, such as the cGMP-PKG signaling pathway, and the Rap1 signaling pathway. What's more, GSEA enrichment analysis showed these genes were enriched in cell cycle phase transition, cell division, cellular response to DNA damage stimulus, and chromosome organization. To further explore the relationship between differential m6A modified genes and clinical parameters of LUAD patients, we searched The Cancer Genome Atlas (TCGA) and identified 2 genes (FCRL5 and GPRIN1) that were associated with the prognosis and diagnosis of LUAD patients. Furthermore, we found a positive correlation between GPRIN1 and m6A reader YTHDF1 in the GEPIA2 database. It was verified that YTHDF1 binds to GPRIN1 mRNA and regulates its expression. Our study results suggest that m6A modification plays important role in the progression and prognosis of LUAD and maybe a potential new therapeutic target for LUAD patients in the future.

4.
Front Oncol ; 12: 1032295, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267960

RESUMEN

[This corrects the article DOI: 10.3389/fonc.2022.791332.].

5.
Biomed Res Int ; 2021: 6905985, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33506032

RESUMEN

BACKGROUND: The majority of lung cancers are adenocarcinomas, with the proportion being 40%. The patients are mostly diagnosed in the middle and late stages with metastasis and easy recurrence, which poses great challenge to the treatment and prognosis. Platinum-based chemotherapy is a primary treatment for adenocarcinoma, which frequently causes drug resistance. As a result, it is important to uncover the mechanisms of the chemoresponse of adenocarcinoma to platinum-based chemotherapy. METHODS: The genes from the dataset GSE7880 were gathered into gene modules with the assistance of weighted gene coexpression network analysis (WGCNA), the gene trait significance absolute value (|GS|), and gene module memberships (MM). The genes from hub gene modules were calculated with a protein-protein interaction (PPI) network analysis in order to obtain a screening map of hub genes. The hub genes with both a high |GS| and MM and a high degree were selected. Furthermore, genes in the hub gene modules also went through a Gene Ontology (GO) functional enrichment analysis. RESULTS: 11 hub genes in four hub gene modules (LY86, ACTR2, CDK2, CKAP4, KPNB1, RBBP4, SMAD4, MYL6, RPS27, TSPAN2, and VAMP2) were chosen as the significant hub genes. Through the GO function enrichment analysis, it was indicated that four modules were abundant in immune system functions (floralwhite), amino acid biosynthetic process (lightpink4), cell chemotaxis (navajowhite2), and targeting protein (paleturquoise). Four hub genes with the highest |GS| were verified by prognostic analysis.


Asunto(s)
Adenocarcinoma del Pulmón , Resistencia a Antineoplásicos , Neoplasias Pulmonares , Compuestos de Platino/farmacología , Proteína 4 de Unión a Retinoblastoma , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/mortalidad , Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Pronóstico , Mapas de Interacción de Proteínas/efectos de los fármacos , Mapas de Interacción de Proteínas/genética , Proteína 4 de Unión a Retinoblastoma/genética , Proteína 4 de Unión a Retinoblastoma/metabolismo , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA