Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gene Ther ; 31(3-4): 154-164, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38097651

RESUMEN

The adeno-associated virus (AAV) gene therapy has been widely applied to mouse models for deafness. But, AAVs could transduce non-targeted organs after inner ear delivery due to their low cell-type specificity. This study compares transgene expression and biodistribution of AAV1, AAV2, Anc80L65, AAV9, AAV-PHP.B, and AAV-PHP.eB after round window membrane (RWM) injection in neonatal mice. The highest virus concentration was detected in the injected cochlea. AAV2, Anc80L65, AAV9, AAV-PHP.B, and AAV-PHP.eB transduced both inner hair cells (IHCs) and outer hair cells (OHCs) with high efficiency, while AAV1 transduced IHCs with high efficiency but OHCs with low efficiency. All AAV subtypes finitely transduced contralateral inner ear, brain, heart, and liver compared with the injected cochlea. In most brain regions, the enhanced green fluorescent protein (eGFP) expression of AAV1 and AAV2 was lower than that of other four subtypes. We suggested the cochlear aqueduct might be one of routes for vectors instantaneously infiltrating into the brain from the cochlea through a dye tracking test. In summary, our results provide available data for further investigating the biodistribution of vectors through local inner ear injection and afford a reference for selecting AAV serotypes for gene therapy toward deafness.


Asunto(s)
Sordera , Vectores Genéticos , Animales , Ratones , Distribución Tisular , Vectores Genéticos/genética , Cóclea/metabolismo , Terapia Genética/métodos , Sordera/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Transducción Genética
2.
Curr Issues Mol Biol ; 46(4): 2884-2925, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666911

RESUMEN

At present, the occurrence of a large number of infectious and non-communicable diseases poses a serious threat to human health as well as to drug development for the treatment of these diseases. One of the most significant challenges is finding new drug candidates that are therapeutically effective and have few or no side effects. In this respect, the active compounds in medicinal plants, especially flavonoids, are potentially useful compounds with a wide range of pharmacological activities. They are naturally present in nature and valuable in the treatment of many infectious and non-communicable diseases. Flavonoids are divided into fourteen categories and are mainly derived from plant extraction, chemical synthesis and structural modification, and biosynthesis. The structural modification of flavonoids is an important way to discover new drugs, but biosynthesis is currently considered the most promising research direction with the potential to revolutionize the new production pipeline in the synthesis of flavonoids. However, relevant problems such as metabolic pathway analyses and cell synthesis protocols for flavonoids need to be addressed on an urgent basis. In the present review, new research techniques for assessing the biological activities of flavonoids and the mechanisms of their biological activities are elucidated and their modes of interaction with other drugs are described. Moreover, novel drug delivery systems, such as nanoparticles, bioparticles, colloidals, etc., are gradually becoming new means of addressing the issues of poor hydrophilicity, lipophilicity, poor chemical stability, and low bioavailability of flavonoids. The present review summarizes the latest research progress on flavonoids, existing problems with their therapeutic efficacy, and how these issues can be solved with the research on flavonoids.

3.
Environ Res ; 243: 117846, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38065387

RESUMEN

As a major challenge to global food security, soil salinity is an important abiotic stress factor that seriously affects the crop growth and yield. In this study, the mechanism of salt resistance of Pantoea jilinensis D25 and its improving effect on salt tolerance of tomato were explored with salt resistance-related genes identified in strain D25 by genomic sequencing. The results showed that in comparison with the treatment of NaCl, strain D25 significantly increased the fresh weight, shoot length, root length, and chlorophyll content of tomato under salt stress by 46.7%, 20%, 42.4%, and 44.2%, respectively, with increased absorptions of various macronutrients and micronutrients and decreased accumulation of Na+. The activities of defense enzymes (peroxidase, catalase, superoxide dismutase, phenylalanine ammonia-lyase, and polyphenol oxidase) were enhanced, while the content of malondialdehyde was decreased. The results of quantitative real-time PCR analysis showed that the expressions of genes (SlSOS1, SlNHX1, SlHKT1.1, SlSOD1, SlAPX2, SlAOS, SlPin II, Solyc08g066270.1, Solyc03g083420.2 and SlGA20ox1) related to ion transporters, antioxidant machinery, key defense, serine/threonine protein kinase synthesis, and gibberellin (GA) signal protein were up-regulated and were the highest in the treatment of both NaCl and strain D25. The activities of enzymes (dehydrogenase, urease, invertase, and catalase activities) related to soil fertility were enhanced. The results of 16S rRNA sequencing showed that soil microbial diversity and the abundance of probiotics (e.g., Acidibacter, Limnobacter, and Romboutsia) were significantly increased. Our study provided strong experimental evidence to support the agricultural application of strain D25 in the promotion of growth in crops.


Asunto(s)
Pantoea , Solanum lycopersicum , Antioxidantes/metabolismo , Catalasa , Tolerancia a la Sal , Pantoea/metabolismo , Suelo/química , ARN Ribosómico 16S/genética , Cloruro de Sodio
4.
BMC Vet Res ; 20(1): 179, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715123

RESUMEN

Salmonella infections pose a significant threat to animal and human health. Phytochemicals present a potential alternative treatment. Galla chinensis tannic acid (GCTA), a hydrolyzable polyphenolic compound, inhibits bacterial growth and demonstrates potential as an alternative or supplement to antibiotics to prevent Salmonella infections. However, little is known about the antimicrobial mechanism of GCTA against Salmonella. Here, we revealed 456 differentially expressed proteins upon GCTA treatment, impacting pathways related to DNA replication, repair, genomic stability, cell wall biogenesis, and lipid metabolism using TMT-labeled proteomic analysis. TEM analysis suggested altered bacterial morphology and structure post-treatment. A Salmonella-infected-mouse model indicated that GCTA administration improved inflammatory markers, alleviated intestinal histopathological alterations, and reduced Salmonella enterica serovar Enteritidis (S. Enteritidis) colonization in the liver and spleen of Salmonella-infected mice. The LD50 of GCTA was 4100 mg/kg with an oral single dose, vastly exceeding the therapeutic dose. Thus, GCTA exhibited antibacterial and anti-infective activity against S. Enteritidis. Our results provided insight into the molecular mechanisms of these antibacterial effects, and highlights the potential of GCTA as an alternative to antibiotics.


Asunto(s)
Proteómica , Salmonelosis Animal , Salmonella enteritidis , Taninos , Animales , Salmonella enteritidis/efectos de los fármacos , Ratones , Taninos/farmacología , Taninos/uso terapéutico , Salmonelosis Animal/tratamiento farmacológico , Salmonelosis Animal/microbiología , Femenino , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Ratones Endogámicos BALB C , Medicamentos Herbarios Chinos , Polifenoles
5.
Hum Genet ; 142(2): 289-304, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36383253

RESUMEN

Mutations to the OTOF gene are among the most common reasons for auditory neuropathy. Although cochlear implants are often effective in restoring sound transduction, there are currently no biological treatments for individuals with variants of OTOF. Previous studies have reported the rescue of hearing in DFNB9 mice using OTOF gene replacement although the efficacy needs improvement. Here, we developed a novel dual-AAV-mediated gene therapy system based on the principles of protein trans-splicing, and we show that this system can reverse bilateral deafness in Otof -/- mice after a single unilateral injection. The system effectively expressed exogenous mouse or human otoferlin after injection on postnatal day 0-2. Human otoferlin restored hearing to near wild-type levels for at least 6 months and restored the release of synaptic vesicles in inner hair cells. Our study not only provides a preferential clinical strategy for the treatment of OTOF-related auditory neuropathies, but also describes a route of development for other large-gene therapies and protein engineering techniques.


Asunto(s)
Pérdida Auditiva Central , Pérdida Auditiva Sensorineural , Humanos , Animales , Ratones , Trans-Empalme , Audición , Pérdida Auditiva Sensorineural/genética , Mutación , Proteínas de la Membrana/genética
6.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37884449

RESUMEN

AIMS: Soybean root rot, caused by Fusarium oxysporum, leads to significant economic and financial losses to the soybean processing industry globally. In the study, we aimed to explore a biocontrol agent to combat F. oxysporum infection in soybean. METHODS AND RESULTS: From soybean rhizosphere soil, 48 strains were isolated. Among them, the strain DR11 exhibited the highest inhibition rate of 72.27%. Morphological, physiological, biochemical, and 16S rDNA identification revealed that the strain DR11 was Klebsiella grimontii DR11. Strain DR11 could inhibit the growth of F. oxysporum and spore formation and alter the mycelial morphology. At 5.0 × 106 CFU mL-1, pH 7, and 30°C, it exhibited the highest inhibitory rate (72.27%). Moreover, it could decrease the activity of cell-wall-degrading enzymes of F. oxysporum. Simultaneously, the activities of defense-related enzymes and content of malondialdehyde in soybean plants were increased after treatment with strain DR11. In addition, strain DR11 could form aggregates to form biofilm and adsorb on the surface of soybean roots. It inhibited F. oxysporum growth on soybean seedlings, with an inhibitory effect of 62.71%. CONCLUSION: Klebsiella grimontii DR11 had a strong inhibitory effect on F. oxysporum and could be used as a biocontrol agent to combat F. oxysporum infection in soybean.


Asunto(s)
Antifúngicos , Fusarium , Glycine max/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
7.
Cell Tissue Bank ; 24(1): 253-264, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35986799

RESUMEN

To investigate the effect of human adipose tissue-derived multilineage-differentiating stress-enduring (Muse) cells on the oxidative stress injury of human epidermal melanocytes (HEMs) in vitro. HEMs were treated with H2O2 to establish an oxidative stress injury model and then were co-cultured with adipose tissue-derived Muse cells. Immunohistochemistry, flow cytometry and Western blotting were used to assess changes in autophagy flux, apoptosis, expression of melanin synthesis related proteins and proliferation of melanocytes. Our findings demonstrate that co-culture with Muse cells significantly increased the tolerance of HEMs to oxidative stress, enhanced autophagy flux and reduced apoptosis. The expression of proteins related to the formation of melanin increased as did cell proliferation. Treatment with the autophagy inhibitor, 3-methyladenine (3MA), partially counteracted the improvement of oxidative stress tolerance in melanocytes elicited by co-culture with Muse cells. Muse cells promote autophagy and oxidative stress tolerance of melanocytes.


Asunto(s)
Tejido Adiposo , Autofagia , Melanocitos , Células Madre Mesenquimatosas , Tejido Adiposo/citología , Humanos , Femenino , Células Epidérmicas/citología , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Melanocitos/patología , Estrés Oxidativo , Apoptosis , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Técnicas de Cocultivo , Exosomas/metabolismo , Peróxido de Hidrógeno/farmacología , Proliferación Celular , Adulto
8.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38003461

RESUMEN

Inflammation is the host response of immune cells during infection and traumatic tissue injury. An uncontrolled inflammatory response leads to inflammatory cascade, which in turn triggers a variety of diseases threatening human and animal health. The use of existing inflammatory therapeutic drugs is constrained by their high cost and susceptibility to systemic side effects, and therefore new therapeutic candidates for inflammatory diseases need to be urgently developed. Natural products are characterized by wide sources and rich pharmacological activities, which are valuable resources for the development of new drugs. This study aimed to uncover the alleviating effect and potential mechanism of natural product Limonium aureum (LAH) on LPS-induced inflammatory responses in macrophages. The experimental results showed that the optimized conditions for LAH ultrasound-assisted extraction via response surface methodology were an ethanol concentration of 72%, a material-to-solvent ratio of 1:37 g/mL, an extraction temperature of 73 °C, and an extraction power of 70 W, and the average extraction rate of LAH total flavonoids was 0.3776%. Then, data of 1666 components in LAH ethanol extracts were obtained through quasi-targeted metabolomics analysis. The ELISA showed that LAH significantly inhibited the production of pro-inflammatory cytokines while promoting the secretion of anti-inflammatory cytokines. Finally, combined with the results of network pharmacology analysis and protein expression validation of hub genes, it was speculated that LAH may alleviate LPS-induced inflammatory responses of macrophages through the AKT1/RELA/PTGS2 signaling pathway and the MAPK3/JUN signaling pathway. This study preliminarily revealed the anti-inflammatory activity of LAH and the molecular mechanism of its anti-inflammatory action, and provided a theoretical basis for the development of LAH as a new natural anti-inflammatory drug.


Asunto(s)
Lipopolisacáridos , Plumbaginaceae , Animales , Humanos , Ratones , Lipopolisacáridos/farmacología , Plumbaginaceae/metabolismo , Extractos Vegetales/uso terapéutico , Macrófagos/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antiinflamatorios/uso terapéutico , Etanol/farmacología , Citocinas/metabolismo , Células RAW 264.7
9.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37834176

RESUMEN

To investigate the effect of polymer blends on the in vitro release/degradation and pharmacokinetics of moxidectin-loaded PLGA microspheres (MOX-MS), four formulations (F1, F2, F3 and F4) were prepared using the O/W emulsion solvent evaporation method by blending high (75/25, 75 kDa) and low (50/50, 23 kDa) molecular weight PLGA with different ratios. The addition of low-molecular-weight PLGA did not change the release mechanism of microspheres, but sped up the drug release of microspheres and drastically shortened the lag phase. The in vitro degradation results show that the release of microspheres consisted of a combination of pore diffusion and erosion, and especially autocatalysis played an important role in this process. Furthermore, an accelerated release method was also developed to reduce the period for drug release testing within one month. The pharmacokinetic results demonstrated that MOX-MS could be released for at least 60 days with only a slight blood drug concentration fluctuation. In particular, F3 displayed the highest AUC and plasma concentration (AUC0-t = 596.53 ng/mL·d, Cave (day 30-day 60) = 8.84 ng/mL), making it the optimal formulation. Overall, these results indicate that using polymer blends could easily adjust hydrophobic drug release from microspheres and notably reduce the lag phase of microspheres.


Asunto(s)
Ácido Láctico , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Láctico/química , Ácido Poliglicólico/química , Microesferas , Tamaño de la Partícula
10.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982615

RESUMEN

The redox system is closely related to changes in cellular metabolism. Regulating immune cell metabolism and preventing abnormal activation by adding antioxidants may become an effective treatment for oxidative stress and inflammation-related diseases. Quercetin is a naturally sourced flavonoid with anti-inflammatory and antioxidant activities. However, whether quercetin can inhibit LPS-induced oxidative stress in inflammatory macrophages by affecting immunometabolism has been rarely reported. Therefore, the present study combined cell biology and molecular biology methods to investigate the antioxidant effect and mechanism of quercetin in LPS-induced inflammatory macrophages at the RNA and protein levels. Firstly, quercetin was found to attenuate the effect of LPS on macrophage proliferation and reduce LPS-induced cell proliferation and pseudopodia formation by inhibiting cell differentiation, as measured by cell activity and proliferation. Subsequently, through the detection of intracellular reactive oxygen species (ROS) levels, mRNA expression of pro-inflammatory factors and antioxidant enzyme activity, it was found that quercetin can improve the antioxidant enzyme activity of inflammatory macrophages and inhibit their ROS production and overexpression of inflammatory factors. In addition, the results of mitochondrial morphology and mitochondrial function assays showed that quercetin could upregulate the mitochondrial membrane potential, ATP production and ATP synthase content decrease induced by LPS, and reverse the mitochondrial morphology damage to a certain extent. Finally, Western blotting analysis demonstrated that quercetin significantly upregulated the protein expressions of SIRT1 and PGC-1α, that were inhibited by LPS. And the inhibitory effects of quercetin on LPS-induced ROS production in macrophages and the protective effects on mitochondrial morphology and membrane potential were significantly decreased by the addition of SIRT1 inhibitors. These results suggested that quercetin reprograms the mitochondria metabolism of macrophages through the SIRT1/PGC-1α signaling pathway, thereby exerting its effect of alleviating LPS-induced oxidative stress damage.


Asunto(s)
Antioxidantes , Quercetina , Quercetina/farmacología , Antioxidantes/farmacología , Antioxidantes/metabolismo , Lipopolisacáridos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/metabolismo , Estrés Oxidativo , Macrófagos/metabolismo , Transducción de Señal , Adenosina Trifosfato/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
11.
Molecules ; 28(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37687122

RESUMEN

Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), can affect the entire gastrointestinal tract and mucosal layer and lead to intestinal damage and intestinal dysfunction. IBD is an inflammatory disease of the gastrointestinal tract that significantly impacts public health development. Monoclonal antibodies and other synthetic medications are currently used to treat IBD, but they are suspected of producing serious side effects and causing a number of other problems with long-term use. Numerous in vitro and in vivo studies have shown that organic macromolecules from plants and animals have an alleviating effect on IBD-related problems, and many of them are also capable of altering enzymatic function, reducing oxidative stress, and inhibiting the production of cytokines and release of proinflammatory transcriptional factors. Thus, in this paper, the natural products with potential anti-IBD activities and their mechanism of action were reviewed, with a focus on the protective effects of natural products on intestinal barrier integrity and the regulation of tight junction protein expression and remodeling. In conclusion, the insights provided in the present review will be useful for further exploration and development of natural products for the treatment of IBD.


Asunto(s)
Productos Biológicos , Colitis Ulcerosa , Enfermedades Inflamatorias del Intestino , Animales , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Uniones Estrechas , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico
12.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36430491

RESUMEN

Neutrophils are involved in the development of endometritis, but it remains unknown how neutrophils induce inflammation and tissue damage. Neutrophil extracellular traps (NETs) clear invading pathogens during infection but induce pyroptosis, leading to inflammation and tissue damage. Thus, our objective was to investigate whether NETs participate in bovine endometrial epithelial cell (BEEC) pyroptosis during endometritis. To confirm this, NETs and caspase-1/4; apoptosis-associated speck-like protein containing a caspase-recruitment domain(ASC); nod-like receptor protein-3 (NLRP3); and gasdermin D N-terminal (GSDMD-N), TNF-a, IL-1ß, IL-6, and IL-18 in endometrial tissue were detected. Pathological section and vaginal discharge smears were performed to visually determine endometritis in the uterus. BEECs were stimulated with NETs to induce pyroptosis, which was treated with DNase I against pyroptosis. Caspase-1/4, ASC, NLRP3, GSDMD-N, TNF-a, IL-1ß, IL-6, and IL-18 in BEECs were analyzed in endometrial tissue. The results showed that NET formation, as well as pyroptosis-related proteins and proinflammatory, cytokines were elevated in the endometrial tissue of cows with endometritis. Pathological sections and vaginal discharge smears showed increased neutrophils and plasma cells in the uterus, as well as tissue congestion. In BEECs, NETs increased the level of pyroptosis-related proteins and proinflammatory cytokines and were diminished by DNase I. In summary NETs participate BEEC pyroptosis during endometritis in dairy cows.


Asunto(s)
Endometritis , Trampas Extracelulares , Excreción Vaginal , Humanos , Femenino , Bovinos , Animales , Piroptosis , Trampas Extracelulares/metabolismo , Endometritis/veterinaria , Interleucina-18/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Interleucina-6/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Epiteliales/metabolismo , Inflamación , Proteínas NLR/metabolismo , Citocinas/metabolismo , Desoxirribonucleasa I/metabolismo
13.
Cell Tissue Bank ; 22(1): 67-75, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32978700

RESUMEN

Human epidermal melanocytes can be induced to form melanocyte spheroids and revert to immature characteristics by long-term trypsinization (LTT). To further explore the biological characteristics of melanocytes after LTT and to study the underlying mechanism. Melanocytes were subjected to long-term (2 h) trypsinization in this study, after which their viability, proliferation and autophagy were characterized. The expression of melanocyte markers [human melanoma black45 (HMB45), tyrosinase (TYR) and Nestin] was detected and relative expression levels of mRNAs encoding TYR, Nestin, c-Kit and microphthalmia-associated transcription factor (MITF) were determined. After LTT, more short spindle-shaped melanocytes appeared and viability assays demonstrated that most melanocytes survived that treatment but had decreased proliferation rates compared to the untreated controls. There was a significant increase in autophagy of melanocytes after LTT and the expression of TYR was decreased compared with untreated control melanocytes. There were no significant differences in the expression of HMB45 or Nestin between the two groups. Compared with untreated melanocytes, levels of message ribonucleic acid (mRNAs) encoding TYR, c-Kit and MITF were decreased after LTT, while Nestin mRNA levels were increased. These results clarified that Long-term treatment with trypsin causes the dedifferentiation of mature epidermal melanocytes in vitro.


Asunto(s)
Epidermis , Melanocitos , Humanos , Monofenol Monooxigenasa , Proteínas Proto-Oncogénicas c-kit/genética , ARN Mensajero/genética
14.
Cell Tissue Bank ; 21(2): 257-264, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32103403

RESUMEN

To characterize the tolerance of different types of human epidermal cells to trypsinization in vitro and develop a new method to separate and purify melanocytes according to their tolerance to trypsinization. Epidermal cells were obtained by separating the epidermis from human foreskins. Some of those cells were used for routine culture, and then were subjected to differential trypsin digestion. The remaining epidermal cells were resuspended in a 0.25% trypsin solution and then were neutralized by the addition of bovine serum at different time points. Immunofluorescence staining of HMB45, K15 and vimentin was used to identify melanocytes, keratinocytes and fibroblasts, respectively. We found that Keratinocytes, melanocytes and fibroblasts are primary cells obtained from conventional cultures of human skin. Purified keratinocytes and melanocytes can be obtained by conventional differential trypsin digestion, but fibroblasts in the melanocyte population quickly gain a survival advantage after passage. With longer trypsin digestion times, the number of adherent cells decreased, the time required for cell attachment increased, and the proportion of melanocytes increased. There were no obvious keratinocytes in cell populations obtained after 12 h of trypsinization of epidermal cells, and more short spindle-shaped melanocytes appeared, all of which were HMB45-positive. In conclusion, the tolerance of human epidermal melanocytes to trypsinization in vitro was better than epidermal keratinocytes, and that property can be used to purify melanocytes and was better than traditional differential trypsin digestion. The morphology of cells that survived the long-term trypsin digestion changed and they had good proliferative activity, but seemed to be more immature.


Asunto(s)
Células Epidérmicas/metabolismo , Tripsina/metabolismo , Células Epidérmicas/citología , Humanos , Masculino , Melanocitos/citología
15.
Cancer Invest ; 34(6): 286-92, 2016 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-27348718

RESUMEN

Sarcomatoid carcinoma is a biphasic neoplasm composed of highly complex, intimately admixed malignant epithelial and mesenchymal elements. We herein report a rare case of cutaneous metastasis of pulmonary sarcomatoid carcinoma that contains liposarcomatous, rhabdosarcomatous and chondrosarcomatous heterologous differentiation, and review relevant literatures to lead to a better understanding of this rare but highly aggressive tumor.


Asunto(s)
Carcinoma/patología , Neoplasias Pulmonares/patología , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/secundario , Anciano , Biomarcadores , Biopsia , Carcinoma/diagnóstico , Carcinoma/epidemiología , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/epidemiología , Masculino , Neoplasias Cutáneas/terapia , Resultado del Tratamiento
16.
Vet World ; 17(3): 712-719, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38680148

RESUMEN

Background and Aim: Simiao Yong'an decoction (SYD) is a classic traditional Chinese medicine (TCM) prescription that has the effects of clearing heat, detoxifying, promoting blood circulation, and relieving pain. In this study, we investigated the effect of SYD on the diversity of intestinal microbiota after fermentation by Bacillus subtilis. Materials and Methods: SYD was fermented using B. subtilis. Female Sprague-Dawley rats were randomly divided into the following four groups with six rats in each group: Negative sample group (NS), water exaction non-fermentation group (WE), B. subtilis group (BS), and fermentation liquid group (FL). All rats were orally administered for 14 days. High-throughput Illumina sequencing was used to analyze 16S rRNA expression in rat fecal samples. Results: A total of 2782 operational taxonomical units (OTUs) were identified in this study, and 634 OTUs were shared among all samples. Bacteroidetes (28.17%-53.20%) and Firmicutes (48.35%-67.83%) were the most abundant phyla identified among the four groups. The abundance of Escherichia and Alistipes was lower in the FL group than in the NS group, whereas the abundance of Bifidobacteria and Lactobacillus was increased in the FL group (p < 0.05). The abundance of Bifidobacterium was significantly upregulated in the FL group compared with the WE and BS groups (p < 0.05). Conclusion: After fermentation, SYD had a significantly better effect than SYD or B. subtilis. SYD significantly promoted the growth of intestinal probiotics, inhibited the growth of pathogenic bacteria, and maintained the balance of intestinal microbiota in SD rats. This study provides new insights into the development and use of SYD.

17.
Sci Rep ; 14(1): 12673, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830990

RESUMEN

Retained placenta is a common health issue, and appropriate prevention strategies are effective in postpartum health management. This study aimed to evaluate whether early intervention using GYS can prevent retained placenta and puerperal metritis, as well as enhance reproductive outcomes in cows. Each bovine in the GYS group (n = 591) received a single prophylactic dose of GYS (0.5 g/kg body weight) orally within 2 h after parturition, while those in the control group (n = 598) received no intervention. GYS treatment was associated with a decreased incidence of retained placenta (4.6% vs. 12.0%, P < 0.01, OR = 0.335), a lower puerperal metritis risk (8.8% vs. 20.1%, P < 0.01, OR = 0.369), and a reduced need for additional therapeutic antibiotics (11.2% vs. 26.1%, P < 0.01, OR = 0.342). We observed increases in the first service conception rate (59.7% vs. 49.1%, P < 0.01) and conception rate within 305 days postpartum (93.2% vs. 85.5%, P < 0.01) in the GYS group than in the control group. A significant decrease was observed in the number of services per conception (1.8 ± 1.1 vs. 2.1 ± 1.4, P < 0.01) and the calving-to-conception interval (83.6 ± 39.6 vs. 96.6 ± 52.5 days, P < 0.01) between the two groups. Additionally, GYS treatment increased milk yield on days 7, 14, and 28 postpartum without affecting milk fat, milk protein, somatic cell count (SCC), or milk urea nitrogen (MUN) on days 7 and 28 postpartum. Accordingly, the GYS was effective and safe in preventing retained placenta and to improve reproductive performance in cows. Therefore, it could be a prophylactic intervention for superior postpartum fertility in cows.


Asunto(s)
Medicamentos Herbarios Chinos , Retención de la Placenta , Reproducción , Animales , Femenino , Bovinos , Embarazo , Retención de la Placenta/prevención & control , Retención de la Placenta/veterinaria , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Reproducción/efectos de los fármacos , Enfermedades de los Bovinos/prevención & control , Periodo Posparto/efectos de los fármacos , Lactancia/efectos de los fármacos
18.
Pharmaceutics ; 16(5)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38794336

RESUMEN

The escalating demand for enhanced therapeutic efficacy and reduced adverse effects in the pharmaceutical domain has catalyzed a new frontier of innovation and research in the field of pharmacy: novel drug delivery systems. These systems are designed to address the limitations of conventional drug administration, such as abbreviated half-life, inadequate targeting, low solubility, and bioavailability. As the disciplines of pharmacy, materials science, and biomedicine continue to advance and converge, the development of efficient and safe drug delivery systems, including biopharmaceutical formulations, has garnered significant attention both domestically and internationally. This article presents an overview of the latest advancements in drug delivery systems, categorized into four primary areas: carrier-based and coupling-based targeted drug delivery systems, intelligent drug delivery systems, and drug delivery devices, based on their main objectives and methodologies. Additionally, it critically analyzes the technological bottlenecks, current research challenges, and future trends in the application of novel drug delivery systems.

19.
Cell Biochem Biophys ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300374

RESUMEN

This investigation delves into the structural foundation of human dermal telocytes (TCs) with the aim of elucidating their role in signal transmission. Dermal TCs were isolated from human foreskins via enzymatic digestion and flow cytometric sorting, and identified by immunohistochemical staining with an antibody against CD34. The ultrastructure of TCs was examined using transmission electron microscopy (TEM). The proliferation rates of sorted TCs and CD34-negative fibroblasts were compared using the MTS assay (Cell Proliferation Assay). Images of viable cultured TCs were analyzed using atomic force microscopy (AFM) under normal atmospheric pressure and temperature. Results demonstrated that dermal TCs were positive for CD34 and vimentin, predominantly distributed in the reticular dermis and subcutaneous tissue, forming interwoven networks. Each TC had a small body with a high nuclear-plasma ratio and two or three extremely long and thin telopodes (TPs), exhibiting a typical 'moniliform' appearance. Compared with CD34-negative fibroblasts, dermal TCs exhibited significantly lower proliferation rates. Cultured TCs displayed typical moniliform projections (namely, TPs) in the AFM images. The distal ends of TPs were enlarged, shaped like a broom, and extended multiple pseudopods to contact other cell bodies. Slender filamentary pseudopodia and thick, short cone-like structures were observed on the surfaces of the dilated segments and terminals of TPs. These structures are assumed to be evidence of the secretion and release of endosomes, such as exosomes, and the communication between cells. TCs form interstitial networks in the reticular dermis and subcutaneous tissue, providing a structural basis for contacts between cells and the secretion of signal-carrying substances, involving intercellular connections and communication.

20.
Sci Total Environ ; 919: 170771, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38336045

RESUMEN

Tomato gray mold, caused by Botrytis cinerea, is an important disease in tomato. Pantoea jilinensis D25, isolated form tomato rhizosphere soil, can prevent B. cinerea infection in tomato. To determine the underlying biocontrol mechanism, the transcriptome of P. jilinensis D25 was assessed. Differential expression analysis revealed that 941 genes were upregulated and 997 genes were downregulated. Through transcriptome analysis, the suhB gene was knocked out. ΔPj-suhB exhibited lower swimming motility and colonization abilities than strain D25. After 4 days of co-cultivation, ΔPj-suhB could reduce the colony diameter, mycelial weight, and spore production of B. cinerea with the inhibitory rates of 31.72 %, 39.62 %, and 47.42 %, respectively, compared with control. However, the inhibitory rates of strain D25 were 52.91 %, 60.09 %, and 76.85 %, respectively, compared with control. Strain D25 could significantly downregulate pathogenesis-related genes in B. cinerea, whereas the expression level of these genes in B. cinerea was higher after treatment with ΔPj-suhB than after that with strain D25. In vitro experiments revealed that the lesion area and disease control efficacy were 1.520 and 0.038 cm2 and 68.7 % and 99.0 %, respectively, after ΔPj-suhB and strain D25 treatments. Pot experiments revealed that ΔPj-suhB and strain D25 could prevent tomato plants from B. cinerea infection with the disease reduction rate of 37.5 % and 75.0 %, respectively. Though the activities of defense-related enzymes and expression level of defense related genes in tomato plants were increased under ΔPj-suhB treatment, these effects were higher after strain D25 treatment. Thus, these results demonstrated that suhB was the key gene in strain D25 underlying its biocontrol effect and mobility.


Asunto(s)
Botrytis , Pantoea , Solanum lycopersicum , Enfermedades de las Plantas/prevención & control , Micelio , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA