Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Circulation ; 149(25): 1960-1979, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38752370

RESUMEN

BACKGROUND: Cardiomyocyte differentiation involves a stepwise clearance of repressors and fate-restricting regulators through the modulation of BMP (bone morphogenic protein)/Wnt-signaling pathways. However, the mechanisms and how regulatory roadblocks are removed with specific developmental signaling pathways remain unclear. METHODS: We conducted a genome-wide CRISPR screen to uncover essential regulators of cardiomyocyte specification in human embryonic stem cells using a myosin heavy chain 6 (MYH6)-GFP (green fluorescence protein) reporter system. After an independent secondary single guide ribonucleic acid validation of 25 candidates, we identified NF2 (neurofibromin 2), a moesin-ezrin-radixin like (MERLIN) tumor suppressor, as an upstream driver of early cardiomyocyte lineage specification. Independent monoclonal NF2 knockouts were generated using CRISPR-Cas9, and cell states were inferred through bulk RNA sequencing and protein expression analysis across differentiation time points. Terminal lineage differentiation was assessed by using an in vitro 2-dimensional-micropatterned gastruloid model, trilineage differentiation, and cardiomyocyte differentiation. Protein interaction and post-translation modification of NF2 with its interacting partners were assessed using site-directed mutagenesis, coimmunoprecipitation, and proximity ligation assays. RESULTS: Transcriptional regulation and trajectory inference from NF2-null cells reveal the loss of cardiomyocyte identity and the acquisition of nonmesodermal identity. Sustained elevation of early mesoderm lineage repressor SOX2 and upregulation of late anticardiac regulators CDX2 and MSX1 in NF2 knockout cells reflect a necessary role for NF2 in removing regulatory roadblocks. Furthermore, we found that NF2 and AMOT (angiomotin) cooperatively bind to YAP (yes-associated protein) during mesendoderm formation, thereby preventing YAP activation, independent of canonical MST (mammalian sterile 20-like serine-threonine protein kinase)-LATS (large tumor suppressor serine-threonine protein kinase) signaling. Mechanistically, cardiomyocyte lineage identity was rescued by wild-type and NF2 serine-518 phosphomutants, but not NF2 FERM (ezrin-radixin-meosin homology protein) domain blue-box mutants, demonstrating that the critical FERM domain-dependent formation of the AMOT-NF2-YAP scaffold complex at the adherens junction is required for early cardiomyocyte lineage differentiation. CONCLUSIONS: These results provide mechanistic insight into the essential role of NF2 during early epithelial-mesenchymal transition by sequestering the repressive effect of YAP and relieving regulatory roadblocks en route to cardiomyocytes.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Miocitos Cardíacos , Neurofibromina 2 , Humanos , Miocitos Cardíacos/metabolismo , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Sistemas CRISPR-Cas , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología
2.
EMBO J ; 33(22): 2659-75, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25190516

RESUMEN

The small GTPase Arf1 plays critical roles in membrane traffic by initiating the recruitment of coat proteins and by modulating the activity of lipid-modifying enzymes. Here, we report an unexpected but evolutionarily conserved role for Arf1 and the ArfGEF GBF1 at mitochondria. Loss of function of ARF-1 or GBF-1 impaired mitochondrial morphology and activity in Caenorhabditis elegans. Similarly, mitochondrial defects were observed in mammalian and yeast cells. In Saccharomyces cerevisiae, aberrant clusters of the mitofusin Fzo1 accumulated in arf1-11 mutants and were resolved by overexpression of Cdc48, an AAA-ATPase involved in ER and mitochondria-associated degradation processes. Yeast Arf1 co-fractionated with ER and mitochondrial membranes and interacted genetically with the contact site component Gem1. Furthermore, similar mitochondrial abnormalities resulted from knockdown of either GBF-1 or contact site components in worms, suggesting that the role of Arf1 in mitochondrial functioning is linked to ER-mitochondrial contacts. Thus, Arf1 is involved in mitochondrial homeostasis and dynamics, independent of its role in vesicular traffic.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Mitocondrias/enzimología , Saccharomyces cerevisiae/enzimología , Factor 1 de Ribosilacion-ADP/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Proc Natl Acad Sci U S A ; 110(34): E3152-61, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23912186

RESUMEN

Invasiveness underlies cancer aggressiveness and is a hallmark of malignancy. Most malignant tumors have elevated levels of Tn, an O-GalNAc glycan. Mechanisms underlying Tn up-regulation and its effects remain unclear. Here we show that Golgi-to-endoplasmic reticulum relocation of polypeptide N-acetylgalactosamine-transferases (GalNAc-Ts) drives high Tn levels in cancer cell lines and in 70% of malignant breast tumors. This process stimulates cell adhesion to the extracellular matrix, as well as migration and invasiveness. The GalNAc-Ts lectin domain, mediating high-density glycosylation, is critical for these effects. Interfering with the lectin domain function inhibited carcinoma cell migration in vitro and metastatic potential in mice. We also show that stimulation of cell migration is dependent on Tn-bearing proteins present in lamellipodia of migrating cells. Our findings suggest that relocation of GalNAc-Ts to the endoplasmic reticulum frequently occurs upon cancerous transformation to enhance tumor cell migration and invasiveness through modification of cell surface proteins.


Asunto(s)
Acetilgalactosamina/metabolismo , Retículo Endoplásmico/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Glicosiltransferasas/metabolismo , Invasividad Neoplásica/fisiopatología , Neoplasias/fisiopatología , Animales , Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Western Blotting , Línea Celular , Movimiento Celular/fisiología , Clonación Molecular , Técnica del Anticuerpo Fluorescente , Glicosilación , Aparato de Golgi/metabolismo , Humanos , Estimación de Kaplan-Meier , Ratones , Ratones Endogámicos BALB C , Neoplasias/metabolismo
4.
Elife ; 102021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34870592

RESUMEN

The Src tyrosine kinase controls cancer-critical protein glycosylation through Golgi to ER relocation of GALNTs enzymes. How Src induces this trafficking event is unknown. Golgi to ER transport depends on the GTP exchange factor (GEF) GBF1 and small GTPase Arf1. Here, we show that Src induces the formation of tubular transport carriers containing GALNTs. The kinase phosphorylates GBF1 on 10 tyrosine residues; two of them, Y876 and Y898, are located near the C-terminus of the Sec7 GEF domain. Their phosphorylation promotes GBF1 binding to the GTPase; molecular modeling suggests partial melting of the Sec7 domain and intramolecular rearrangement. GBF1 mutants defective for these rearrangements prevent binding, carrier formation, and GALNTs relocation, while phosphomimetic GBF1 mutants induce tubules. In sum, Src promotes GALNTs relocation by promoting GBF1 binding to Arf1. Based on residue conservation, similar regulation of GEF-Arf complexes by tyrosine phosphorylation could be a conserved and widespread mechanism.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/genética , Familia-src Quinasas/genética , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Fosforilación , Transporte de Proteínas , Familia-src Quinasas/metabolismo
5.
Neurosignals ; 17(3): 169-80, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19202347

RESUMEN

Adenosine 3',5'-cyclic mononucleotide (cAMP) is one of the most important second messengers which govern cellular signal transductions. Adenylyl cyclases (ACs), which are cAMP-synthesizing enzymes, are responsible for cAMP production during extracellular stimulation or intracellular metabolic alteration. In mammals, 9 transmembrane ACs and 1 soluble AC have been identified and characterized. In the past 2 decades, the biochemical properties of these ACs have been extensively studied. Genetic knockout and transgenic overexpression mouse models of at least 6 ACs have been produced, revealing their specific in vivo functions. An awareness of the importance of microdomains and cellular compartmentation for selective AC regulation has also been fostered. Most intriguingly, a handful of novel AC-binding proteins have recently been reported. Selective binding of ACs to their binding partners allows the precise compartmentalization of ACs and permits unique regulation. Based on recent studies on AC-interacting proteins (particularly Snapin and Ric8a), this review focuses on the importance and possible involvement of AC-interacting proteins in (1) the association of the cAMP signaling pathway with various cellular machineries and (2) the coordination of tightly regulated cAMP signaling by other signaling molecules.


Asunto(s)
Adenilil Ciclasas/metabolismo , AMP Cíclico/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica/fisiología , Transducción de Señal/fisiología , Proteínas de Transporte Vesicular/metabolismo , Adenilil Ciclasas/química , Adenilil Ciclasas/genética , Animales , Compartimento Celular/fisiología , Factores de Intercambio de Guanina Nucleótido , Ratones , Sistema Nervioso/metabolismo , Proteínas Nucleares/genética , Estructura Terciaria de Proteína/fisiología , Proteínas de Transporte Vesicular/genética
6.
Biochem J ; 406(3): 383-8, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17593019

RESUMEN

In the present study, we demonstrate that AC5 (type V adenylate cyclase) interacts with Ric8a through directly interacting at its N-terminus. Ric8a was shown to be a GEF (guanine nucleotide exchange factor) for several alpha subunits of heterotrimeric GTP binding proteins (Galpha proteins) in vitro. Selective Galpha targets of Ric8a have not yet been revealed in vivo. An interaction between AC5 and Ric8a was verified by pull-down assays, co-immunoprecipitation analyses, and co-localization in the brain. Expression of Ric8a selectively suppressed AC5 activity. Treating cells with pertussis toxin or expressing a dominant negative Galphai mutant abolished the suppressive effect of Ric8a, suggesting that interaction between the N-terminus of AC5 and a GEF (Ric8a) provides a novel pathway to fine-tune AC5 activity via a Galphai-mediated pathway.


Asunto(s)
Adenilil Ciclasas/metabolismo , Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/metabolismo , Isoenzimas/metabolismo , Adenilil Ciclasas/genética , Adenilil Ciclasas/inmunología , Animales , Western Blotting , AMP Cíclico/metabolismo , Electroforesis en Gel de Poliacrilamida , Genes Dominantes , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Inmunoglobulina G/inmunología , Inmunoprecipitación , Isoenzimas/genética , Isoenzimas/inmunología , Riñón/metabolismo , Toxina del Pertussis/farmacología , Unión Proteica , Conejos , Transducción de Señal , Transfección
7.
Nat Cell Biol ; 19(8): 988-995, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28737772

RESUMEN

Cell polarization enables zygotes to acquire spatial asymmetry, which in turn patterns cellular and tissue axes during development. Local modification in the actomyosin cytoskeleton mediates spatial segregation of partitioning-defective (PAR) proteins at the cortex, but how mechanical changes in the cytoskeleton are transmitted to PAR proteins remains elusive. Here we uncover a role of actomyosin contractility in the remodelling of PAR proteins through cortical clustering. During embryonic polarization in Caenorhabditis elegans, actomyosin contractility and the resultant cortical tension stimulate clustering of PAR-3 at the cortex. Clustering of atypical protein kinase C (aPKC) is supported by PAR-3 clusters and is antagonized by activation of CDC-42. Cortical clustering is associated with retardation of PAR protein exchange at the cortex and with effective entrainment of advective cortical flows. Our findings delineate how cytoskeleton contractility couples the cortical clustering and long-range displacement of PAR proteins during polarization. The principles described here would apply to other pattern formation processes that rely on local modification of cortical actomyosin and PAR proteins.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular , Citoesqueleto/enzimología , Proteínas de Unión al GTP/metabolismo , Mecanotransducción Celular , Proteínas de la Membrana/metabolismo , Actomiosina/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Embrión no Mamífero/enzimología , Proteínas de Unión al GTP/genética , Regulación del Desarrollo de la Expresión Génica , Genotipo , Proteínas de la Membrana/genética , Ratones , Microscopía Fluorescente , Microscopía por Video , Células 3T3 NIH , Fenotipo , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas , Estrés Mecánico , Transfección
8.
PLoS One ; 11(4): e0154280, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27101143

RESUMEN

Endoplasmic reticulum (ER)-mitochondrial contact sites play a pivotal role in exchange of lipids and ions between the two organelles. How size and function of these contact sites are regulated remains elusive. Here we report a previously unanticipated, but conserved role of the small GTPase Sar1 in the regulation of ER-mitochondrial contact site size. Activated Sar1 introduces membrane curvature through its N-terminal amphiphatic helix at the ER-mitochondria interphase and thereby reducing contact size. Conversely, the S. cerevisiae N3-Sar1 mutant, in which curvature induction is decreased, caused an increase in ER-mitochondrial contacts. As a consequence, ER tubules are no longer able to mark the prospective scission site on mitochondria, thereby impairing mitochondrial dynamics. Consistently, blocking mitochondrial fusion partially rescued, whereas deletion of the dynamin-like protein enhanced the phenotype in the sar1D32G mutant. We conclude that Sar1 regulates the size of ER-mitochondria contact sites through its effects on membrane curvature.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/genética , Mitocondrias/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Sustitución de Aminoácidos , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/metabolismo , Secuencia Conservada , Dinaminas/genética , Dinaminas/metabolismo , Retículo Endoplásmico/química , Retículo Endoplásmico/ultraestructura , GTP Fosfohidrolasas/antagonistas & inhibidores , GTP Fosfohidrolasas/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Transporte Iónico , Metabolismo de los Lípidos , Mitocondrias/química , Mitocondrias/ultraestructura , Dinámicas Mitocondriales , Proteínas de Unión al GTP Monoméricas/antagonistas & inhibidores , Proteínas de Unión al GTP Monoméricas/metabolismo , Mutación , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Proteínas de Transporte Vesicular/antagonistas & inhibidores , Proteínas de Transporte Vesicular/metabolismo
9.
Dev Cell ; 21(2): 231-44, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21782526

RESUMEN

Protein toxins such as Ricin and Pseudomonas exotoxin (PE) pose major public health challenges. Both toxins depend on host cell machinery for internalization, retrograde trafficking from endosomes to the ER, and translocation to cytosol. Although both toxins follow a similar intracellular route, it is unknown how much they rely on the same genes. Here we conducted two genome-wide RNAi screens identifying genes required for intoxication and demonstrating that requirements are strikingly different between PE and Ricin, with only 13% overlap. Yet factors required by both toxins are present from the endosomes to the ER, and, at the morphological level, the toxins colocalize in multiple structures. Interestingly, Ricin, but not PE, depends on Golgi complex integrity and colocalizes significantly with a medial Golgi marker. Our data are consistent with two intertwined pathways converging and diverging at multiple points and reveal the complexity of retrograde membrane trafficking in mammalian cells.


Asunto(s)
Exotoxinas/metabolismo , Genoma/genética , Interferencia de ARN/fisiología , Ricina/metabolismo , Toxinas Biológicas/metabolismo , Transporte Biológico/efectos de los fármacos , Transporte Biológico/genética , Línea Celular Tumoral/patología , Citosol/efectos de los fármacos , Citosol/metabolismo , Relación Dosis-Respuesta a Droga , Endosomas/efectos de los fármacos , Endosomas/genética , Exotoxinas/farmacología , Redes Reguladoras de Genes , Pruebas Genéticas/métodos , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Células HeLa/citología , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Osteosarcoma/patología , Pliegue de Proteína/efectos de los fármacos , ARN Interferente Pequeño/farmacología , Ricina/farmacología , Estadística como Asunto , Sintaxina 16/genética , Factores de Tiempo , Transfección
10.
J Neurochem ; 93(2): 310-20, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15816854

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in exon 1 of the Huntingtin (Htt) gene. We show herein that in an HD transgenic mouse model (R6/2), daily administration of CGS21680 (CGS), an A(2A) adenosine receptor (A(2A)-R)-selective agonist, delayed the progressive deterioration of motor performance and prevented a reduction in brain weight. 3D-microMRI analysis revealed that CGS reversed the enlarged ventricle-to-brain ratio of R6/2 mice, with particular improvements in the left and right ventricles. (1)H-MRS showed that CGS significantly reduced the increased choline levels in the striatum. Immunohistochemical analyses further demonstrated that CGS reduced the size of ubiquitin-positive neuronal intranuclear inclusions (NIIs) in the striatum of R6/2 mice and ameliorated mutant Htt aggregation in a striatal progenitor cell line overexpressing mutant Htt with expanded polyQ. Moreover, chronic CGS treatment normalized the elevated blood glucose levels and reduced the overactivation of a major metabolic sensor [5'AMP-activated protein kinase (AMPK)] in the striatum of R6/2 mice. Since AMPK is a master switch for energy metabolism, modulation of energy dysfunction caused by the mutant Htt might contribute to the beneficial effects of CGS. Collectively, CGS is a potential drug candidate for the treatment of HD.


Asunto(s)
Adenosina/análogos & derivados , Adenosina/uso terapéutico , Modelos Animales de Enfermedad , Enfermedad de Huntington/genética , Enfermedad de Huntington/prevención & control , Fenetilaminas/uso terapéutico , Agonistas del Receptor de Adenosina A2 , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Enfermedad de Huntington/patología , Masculino , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA