Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
PLoS Biol ; 18(12): e3000975, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33306668

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and critical regulator of cell cycle progression. Despite its vital role, it has remained challenging to globally map APC/C substrates. By combining orthogonal features of known substrates, we predicted APC/C substrates in silico. This analysis identified many known substrates and suggested numerous candidates. Unexpectedly, chromatin regulatory proteins are enriched among putative substrates, and we show experimentally that several chromatin proteins bind APC/C, oscillate during the cell cycle, and are degraded following APC/C activation, consistent with being direct APC/C substrates. Additional analysis revealed detailed mechanisms of ubiquitylation for UHRF1, a key chromatin regulator involved in histone ubiquitylation and DNA methylation maintenance. Disrupting UHRF1 degradation at mitotic exit accelerates G1-phase cell cycle progression and perturbs global DNA methylation patterning in the genome. We conclude that APC/C coordinates crosstalk between cell cycle and chromatin regulatory proteins. This has potential consequences in normal cell physiology, where the chromatin environment changes depending on proliferative state, as well as in disease.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Cromatina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/fisiología , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/fisiología , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Cromatina/genética , Simulación por Computador , Células HEK293 , Células HeLa , Humanos , Procesamiento Proteico-Postraduccional , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Ubiquitinación
2.
Int J Mol Sci ; 19(12)2018 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-30563203

RESUMEN

Mitogen-activated protein kinase phosphatase (Mkp)-1 exerts its anti-inflammatory activities during Gram-negative sepsis by deactivating p38 and c-Jun N-terminal kinase (JNK). We have previously shown that Mkp-1+/+ mice, but not Mkp-1-/- mice, exhibit hypertriglyceridemia during severe sepsis. However, the regulation of hepatic lipid stores and the underlying mechanism of lipid dysregulation during sepsis remains an enigma. To understand the molecular mechanism underlying the sepsis-associated metabolic changes and the role of Mkp-1 in the process, we infected Mkp-1+/+ and Mkp-1-/- mice with Escherichia coli i.v., and assessed the effects of Mkp-1 deficiency on tissue lipid contents. We also examined the global gene expression profile in the livers via RNA-seq. We found that in the absence of E. coli infection, Mkp-1 deficiency decreased liver triglyceride levels. Upon E. coli infection, Mkp-1+/+ mice, but not Mkp-1-/- mice, developed hepatocyte ballooning and increased lipid deposition in the livers. E. coli infection caused profound changes in the gene expression profile of a large number of proteins that regulate lipid metabolism in wildtype mice, while these changes were substantially disrupted in Mkp-1-/- mice. Interestingly, in Mkp-1+/+ mice E. coli infection resulted in downregulation of genes that facilitate fatty acid synthesis but upregulation of Cd36 and Dgat2, whose protein products mediate fatty acid uptake and triglyceride synthesis, respectively. Taken together, our studies indicate that sepsis leads to a substantial change in triglyceride metabolic gene expression programs and Mkp-1 plays an important role in this process.


Asunto(s)
Fosfatasa 1 de Especificidad Dual/deficiencia , Infecciones por Escherichia coli/genética , Perfilación de la Expresión Génica/métodos , Metabolismo de los Lípidos , Sepsis/genética , Animales , Infecciones por Escherichia coli/metabolismo , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Hígado/química , Redes y Vías Metabólicas , Ratones , Sepsis/metabolismo , Sepsis/microbiología , Análisis de Secuencia de ARN , Triglicéridos/metabolismo
3.
bioRxiv ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39282338

RESUMEN

The CMG helicase (CDC45-MCM2-7-GINS) unwinds DNA as a component of eukaryotic replisomes. Replisome (dis)assembly is tightly coordinated with cell cycle progression to ensure genome stability. However, factors that prevent premature CMG unloading and replisome disassembly are poorly described. Since disassembly is catalyzed by ubiquitination, deubiquitinases (DUBs) represent attractive candidates for safeguarding against untimely and deleterious CMG unloading. We combined a targeted loss-of-function screen with quantitative, single-cell analysis to identify human USP37 as a key DUB preventing replisome disassembly. We demonstrate that USP37 maintains active replisomes on S-phase chromatin and promotes normal cell cycle progression. Proteomics and enzyme assays revealed USP37 interacts with the CMG complex to deubiquitinate MCM7, thus antagonizing replisome disassembly. Significantly, USP37 protects normal epithelial cells from oncoprotein-induced replication stress. Our findings reveal USP37 to be critical to the maintenance of replisomes in S-phase and suggest USP37-targeting as a potential strategy for treating malignancies with defective DNA replication control.

4.
Cell Rep ; 43(8): 114510, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39018246

RESUMEN

Ubiquitination is an essential regulator of cell division. The kinase Polo-like kinase 1 (PLK1) promotes protein degradation at G2/M phase through the E3 ubiquitin ligase Skp1-Cul1-F box (SCF)ßTrCP. However, the magnitude to which PLK1 shapes the mitotic proteome is uncharacterized. Combining quantitative proteomics with pharmacologic PLK1 inhibition revealed a widespread, PLK1-dependent program of protein breakdown at G2/M. We validated many PLK1-regulated proteins, including substrates of the cell-cycle E3 SCFCyclin F, demonstrating that PLK1 promotes proteolysis through at least two distinct E3 ligases. We show that the protein-kinase-A-anchoring protein A-kinase anchor protein 2 (AKAP2) is cell-cycle regulated and that its mitotic degradation is dependent on the PLK1/ßTrCP signaling axis. Expression of a non-degradable AKAP2 mutant resulted in actin defects and aberrant mitotic spindles, suggesting that AKAP2 degradation coordinates cytoskeletal organization during mitosis. These findings uncover PLK1's far-reaching role in shaping the mitotic proteome post-translationally and have potential implications in malignancies where PLK1 is upregulated.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Proteínas de Ciclo Celular , Mitosis , Quinasa Tipo Polo 1 , Proteínas Serina-Treonina Quinasas , Proteómica , Proteínas Proto-Oncogénicas , Humanos , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica/métodos , Proteínas de Anclaje a la Quinasa A/metabolismo , Células HeLa , Proteolisis , Citoesqueleto/metabolismo , Fase G2 , Células HEK293
5.
bioRxiv ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37873169

RESUMEN

Targeted protein degradation by the ubiquitin-proteasome system is an essential mechanism regulating cellular division. The kinase PLK1 coordinates protein degradation at the G2/M phase of the cell cycle by promoting the binding of substrates to the E3 ubiquitin ligase SCFßTrCP. However, the magnitude to which PLK1 shapes the mitotic proteome has not been characterized. Combining deep, quantitative proteomics with pharmacologic PLK1 inhibition (PLK1i), we identified more than 200 proteins whose abundances were increased by PLK1i at G2/M. We validate many new PLK1-regulated proteins, including several substrates of the cell cycle E3 SCFCyclin F, demonstrating that PLK1 promotes proteolysis through at least two distinct SCF-family E3 ligases. Further, we found that the protein kinase A anchoring protein AKAP2 is cell cycle regulated and that its mitotic degradation is dependent on the PLK1/ßTrCP-signaling axis. Interactome analysis revealed that the strongest interactors of AKAP2 function in signaling networks regulating proliferation, including MAPK, AKT, and Hippo. Altogether, our data demonstrate that PLK1 coordinates a widespread program of protein breakdown at G2/M. We propose that dynamic proteolytic changes mediated by PLK1 integrate proliferative signals with the core cell cycle machinery during cell division. This has potential implications in malignancies where PLK1 is aberrantly regulated.

6.
J Exp Med ; 203(1): 131-40, 2006 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-16380513

RESUMEN

Septic shock is a leading cause of morbidity and mortality. However, genetic factors predisposing to septic shock are not fully understood. Excessive production of proinflammatory cytokines, particularly tumor necrosis factor (TNF)-alpha, and the resultant severe hypotension play a central role in the pathophysiological process. Mitogen-activated protein (MAP) kinase cascades are crucial in the biosynthesis of proinflammatory cytokines. MAP kinase phosphatase (MKP)-1 is an archetypal member of the dual specificity protein phosphatase family that dephosphorylates MAP kinase. Thus, we hypothesize that knockout of the Mkp-1 gene results in prolonged MAP kinase activation, augmented cytokine production, and increased susceptibility to endotoxic shock. Here, we show that knockout of Mkp-1 substantially sensitizes mice to endotoxic shock induced by lipopolysaccharide (LPS) challenge. We demonstrate that upon LPS challenge, Mkp-1-/- cells exhibit prolonged p38 and c-Jun NH2-terminal kinase activation as well as enhanced TNF-alpha and interleukin (IL)-6 production compared with wild-type cells. After LPS challenge, Mkp-1 knockout mice produce dramatically more TNF-alpha, IL-6, and IL-10 than do wild-type mice. Consequently, Mkp-1 knockout mice develop severe hypotension and multiple organ failure, and exhibit a remarkable increase in mortality. Our studies demonstrate that MKP-1 is a pivotal feedback control regulator of the innate immune responses and plays a critical role in suppressing endotoxin shock.


Asunto(s)
Proteínas de Ciclo Celular/inmunología , Proteínas Inmediatas-Precoces/inmunología , Fosfoproteínas Fosfatasas/inmunología , Proteínas Tirosina Fosfatasas/inmunología , Choque Séptico/prevención & control , Animales , Proteínas de Ciclo Celular/genética , Células Cultivadas , Citocinas/inmunología , Células Dendríticas/inmunología , Fosfatasa 1 de Especificidad Dual , Proteínas Inmediatas-Precoces/deficiencia , Proteínas Inmediatas-Precoces/genética , Inmunidad Innata , Lipopolisacáridos , Macrófagos Peritoneales/inmunología , Ratones , Ratones Transgénicos , Proteínas Quinasas Activadas por Mitógenos/inmunología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas Fosfatasas/deficiencia , Fosfoproteínas Fosfatasas/genética , Proteína Fosfatasa 1 , Proteínas Tirosina Fosfatasas/deficiencia , Proteínas Tirosina Fosfatasas/genética , Choque Séptico/mortalidad , Bazo/citología , Bazo/inmunología
7.
J Immunol ; 183(11): 7411-9, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19890037

RESUMEN

MAPKs are crucial for TNF-alpha and IL-6 production by innate immune cells in response to TLR ligands. MAPK phosphatase 1 (Mkp-1) deactivates p38 and JNK, abrogating the inflammatory response. We have previously demonstrated that Mkp-1(-/-) mice exhibit exacerbated inflammatory cytokine production and increased mortality in response to challenge with LPS and heat-killed Staphylococcus aureus. However, the function of Mkp-1 in host defense during live Gram-negative bacterial infection remains unclear. We challenged Mkp-1(+/+) and Mkp-1(-/-) mice with live Escherichia coli i.v. to examine the effects of Mkp-1 deficiency on animal survival, bacterial clearance, metabolic activity, and cytokine production. We found that Mkp-1 deficiency predisposed animals to accelerated mortality and was associated with more robust production of TNF-alpha, IL-6 and IL-10, greater bacterial burden, altered cyclooxygenase-2 and iNOS expression, and substantial changes in the mobilization of energy stores. Likewise, knockout of Mkp-1 also sensitized mice to sepsis caused by cecal ligation and puncture. IL-10 inhibition by neutralizing Ab or genetic deletion alleviated increased bacterial burden. Treatment with the bactericidal antibiotic gentamicin, given 3 h after Escherichia coli infection, protected Mkp-1(+/+) mice from septic shock but had no effect on Mkp-1(-/-) mice. Thus, during Gram-negative bacterial sepsis Mkp-1 not only plays a critical role in the regulation of cytokine production but also orchestrates the bactericidal activities of the innate immune system and controls the metabolic response to stress.


Asunto(s)
Fosfatasa 1 de Especificidad Dual/inmunología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/metabolismo , Inflamación/inmunología , Sepsis/inmunología , Animales , Ciclooxigenasa 2/biosíntesis , Ciclooxigenasa 2/inmunología , Fosfatasa 1 de Especificidad Dual/deficiencia , Ensayo de Inmunoadsorción Enzimática , Escherichia coli , Glucosa/metabolismo , Glucógeno/metabolismo , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/metabolismo , Hiperlipidemias/metabolismo , Hiperlipidemias/microbiología , Inflamación/metabolismo , Inflamación/microbiología , Interleucina-10/biosíntesis , Interleucina-10/inmunología , Interleucina-6/biosíntesis , Interleucina-6/inmunología , Metabolismo de los Lípidos/inmunología , Ratones , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Óxido Nítrico Sintasa de Tipo II/inmunología , Sepsis/microbiología , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/inmunología
8.
Elife ; 102021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34851822

RESUMEN

Cell cycle gene expression programs fuel proliferation and are universally dysregulated in cancer. The retinoblastoma (RB)-family of proteins, RB1, RBL1/p107, and RBL2/p130, coordinately represses cell cycle gene expression, inhibiting proliferation, and suppressing tumorigenesis. Phosphorylation of RB-family proteins by cyclin-dependent kinases is firmly established. Like phosphorylation, ubiquitination is essential to cell cycle control, and numerous proliferative regulators, tumor suppressors, and oncoproteins are ubiquitinated. However, little is known about the role of ubiquitin signaling in controlling RB-family proteins. A systems genetics analysis of CRISPR/Cas9 screens suggested the potential regulation of the RB-network by cyclin F, a substrate recognition receptor for the SCF family of E3 ligases. We demonstrate that RBL2/p130 is a direct substrate of SCFcyclin F. We map a cyclin F regulatory site to a flexible linker in the p130 pocket domain, and show that this site mediates binding, stability, and ubiquitination. Expression of a mutant version of p130, which cannot be ubiquitinated, severely impaired proliferative capacity and cell cycle progression. Consistently, we observed reduced expression of cell cycle gene transcripts, as well a reduced abundance of cell cycle proteins, analyzed by quantitative, iterative immunofluorescent imaging. These data suggest a key role for SCFcyclin F in the CDK-RB network and raise the possibility that aberrant p130 degradation could dysregulate the cell cycle in human cancers.


Asunto(s)
Ciclinas/genética , Proteína p130 Similar a la del Retinoblastoma/genética , Retinoblastoma/genética , Factor de Células Madre/genética , Ciclinas/metabolismo , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Proteína p130 Similar a la del Retinoblastoma/metabolismo , Factor de Células Madre/metabolismo
9.
Mol Cell Biol ; 41(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33168699

RESUMEN

The ubiquitin-proteasome system is essential for cell cycle progression. Cyclin F is a cell cycle-regulated substrate adapter F-box protein for the Skp1, CUL1, and F-box protein (SCF) family of E3 ubiquitin ligases. Despite its importance in cell cycle progression, identifying cyclin F-bound SCF complex (SCFCyclin F) substrates has remained challenging. Since cyclin F overexpression rescues a yeast mutant in the cdc4 gene, we considered the possibility that other genes that genetically modify cdc4 mutant lethality could also encode cyclin F substrates. We identified the mitochondrial and cytosolic deacylating enzyme sirtuin 5 (SIRT5) as a novel cyclin F substrate. SIRT5 has been implicated in metabolic processes, but its connection to the cell cycle is not known. We show that cyclin F interacts with and controls the ubiquitination, abundance, and stability of SIRT5. We show SIRT5 knockout results in a diminished G1 population and a subsequent increase in both S and G2/M. Global proteomic analyses reveal cyclin-dependent kinase (CDK) signaling changes congruent with the cell cycle changes in SIRT5 knockout cells. Together, these data demonstrate that SIRT5 is regulated by cyclin F and suggest a connection between SIRT5, cell cycle regulation, and metabolism.


Asunto(s)
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Proteínas F-Box/genética , Regulación Fúngica de la Expresión Génica , Procesamiento Proteico-Postraduccional , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sirtuinas/genética , Ubiquitina-Proteína Ligasas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Perfilación de la Expresión Génica , Genes Letales , Células HEK293 , Células HeLa , Humanos , Mutación , Proteínas Ligasas SKP Cullina F-box/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Sirtuinas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
10.
J Biol Chem ; 284(40): 27123-34, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19651781

RESUMEN

Inducible nitric-oxide (NO) synthase (iNOS) plays a critical role in the eradication of intracellular pathogens. However, the excessive production of NO by iNOS has also been implicated in the pathogenesis of septic shock syndrome. Previously, we have demonstrated that mice deficient in mitogen-activated protein kinase phosphatase-1 (MKP-1) exhibit exaggerated inflammatory responses and rapidly succumb to lipopolysaccharide (LPS). In response to LPS, MKP-1(-/-) mice produce greater amounts of inflammatory cytokines and NO than do wild-type mice, and the MKP-1(-/-) mice exhibit severe hypotension. To understand the molecular basis for the increase in NO production, we studied the role of MKP-1 in the regulation of iNOS expression. We found that LPS challenge elicited a stronger iNOS induction in MKP-1 knock-out mice than in wild-type mice. Likewise, LPS treatment also resulted in greater iNOS expression in macrophages from MKP-1(-/-) mice than in macrophages from wild-type mice. Both accelerated gene transcription and enhanced mRNA stability contribute to the increases in iNOS expression in LPS-stimulated MKP-1(-/-) macrophages. We found that STAT-1, a transcription factor known to mediate iNOS induction by interferon-gamma, was more potently activated by LPS in MKP-1(-/-) macrophages than in wild-type cells. MicroRNA array analysis indicated that microRNA (miR)-155 expression was increased in MKP-1-deficient macrophages compared with wild-type macrophages. Transfection of miR-155 attenuated the expression of Suppressor of Cytokine Signal (SOCS)-1 and enhanced the expression of iNOS. Our results suggest that MKP-1 may negatively regulate iNOS expression by controlling the expression of miR-155 and consequently the STAT pathway via SOCS-1.


Asunto(s)
Fosfatasa 1 de Especificidad Dual/metabolismo , Regulación Enzimológica de la Expresión Génica , Óxido Nítrico Sintasa de Tipo II/genética , Animales , Línea Celular , Fosfatasa 1 de Especificidad Dual/deficiencia , Fosfatasa 1 de Especificidad Dual/genética , Técnicas de Inactivación de Genes , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosforilación/efectos de los fármacos , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN Mensajero/química , ARN Mensajero/metabolismo , Factores de Transcripción STAT/metabolismo , Activación Transcripcional , Tirosina/metabolismo
11.
ACS Chem Biol ; 15(8): 2164-2174, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32589399

RESUMEN

Thiopeptide antibiotics are emerging clinical candidates that exhibit potent antibacterial activity against a variety of intracellular pathogens, including Mycobacterium tuberculosis (Mtb). Many thiopeptides directly inhibit bacterial growth by disrupting protein synthesis. However, recent work has shown that one thiopeptide, thiostrepton (TSR), can also induce autophagy in infected macrophages, which has the potential to be exploited for host-directed therapies against intracellular pathogens, such as Mtb. To better define the therapeutic potential of this class of antibiotics, we studied the host-directed effects of a suite of natural thiopeptides that spans five structurally diverse thiopeptide classes, as well as several analogs. We discovered that thiopeptides as a class induce selective autophagic removal of mitochondria, known as mitophagy. This activity is independent of other biological activities, such as proteasome inhibition or antibiotic activity. We also find that many thiopeptides exhibit potent activity against intracellular Mtb in macrophage infection models. However, the thiopeptide-induced mitophagy occurs outside of pathogen-containing autophagosomes and does not appear to contribute to thiopeptide control of intracellular Mtb. These results expand basic understanding of thiopeptide biology and provide key guidance for the development of new thiopeptide antibiotics and host-directed therapeutics.


Asunto(s)
Mitofagia/efectos de los fármacos , Péptidos/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Compuestos de Sulfhidrilo/química , Animales , Antibacterianos/farmacología , Factor 2 Eucariótico de Iniciación/metabolismo , Proteína Forkhead Box M1/metabolismo , Ratones , Mycobacterium tuberculosis/efectos de los fármacos , Péptidos/química , Fosforilación , Células RAW 264.7
12.
Mol Biol Cell ; 31(8): 725-740, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31995441

RESUMEN

E2F8 is a transcriptional repressor that antagonizes E2F1 at the crossroads of the cell cycle, apoptosis, and cancer. Previously, we discovered that E2F8 is a direct target of the APC/C ubiquitin ligase. Nevertheless, it remains unknown how E2F8 is dynamically controlled throughout the entirety of the cell cycle. Here, using newly developed human cell-free systems that recapitulate distinct inter-mitotic and G1 phases and a continuous transition from prometaphase to G1, we reveal an interlocking dephosphorylation switch coordinating E2F8 degradation with mitotic exit and the activation of APC/CCdh1. Further, we uncover differential proteolysis rates for E2F8 at different points within G1 phase, accounting for its accumulation in late G1 while APC/CCdh1 is still active. Finally, we demonstrate that the F-box protein Cyclin F regulates E2F8 in G2-phase. Altogether, our data define E2F8 regulation throughout the cell cycle, illuminating an extensive coordination between phosphorylation, ubiquitination and transcription in mammalian cell cycle.


Asunto(s)
Ciclo Celular/fisiología , Proteínas Represoras/metabolismo , Secuencias de Aminoácidos , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Sistema Libre de Células , Ciclinas/metabolismo , Factor de Transcripción E2F1/metabolismo , Fase G1/fisiología , Fase G2/fisiología , Células HeLa , Humanos , Mitosis/fisiología , Fosforilación , Procesamiento Proteico-Postraduccional , Proteolisis , Proteínas Recombinantes/metabolismo , Ubiquitinación
13.
Cell Rep ; 26(11): 3076-3086.e6, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30865895

RESUMEN

The transcription factor FOXM1 contributes to cell cycle progression and is significantly upregulated in basal-like breast cancer (BLBC). Despite its importance in normal and cancer cell cycles, we lack a complete understanding of mechanisms that regulate FOXM1. We identified USP21 in an RNAi-based screen for deubiquitinases that control FOXM1 abundance. USP21 increases the stability of FOXM1, and USP21 binds and deubiquitinates FOXM1 in vivo and in vitro, indicating a direct enzyme-substrate relationship. Depleting USP21 downregulates the FOXM1 transcriptional network and causes a significant delay in cell cycle progression. Significantly, USP21 depletion sensitized BLBC cell lines and mouse xenograft tumors to paclitaxel, an anti-mitotic, frontline therapy in BLBC treatment. USP21 is the most frequently amplified deubiquitinase in BLBC patient tumors, and its amplification co-occurs with the upregulation of FOXM1 protein. Altogether, these data suggest a role for USP21 in the proliferation and potentially treatment of FOXM1-high, USP21-high BLBC.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Ciclo Celular , Resistencia a Antineoplásicos , Proteína Forkhead Box M1/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , Paclitaxel/uso terapéutico , Ubiquitinación , Animales , Femenino , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ubiquitina Tiolesterasa/metabolismo
14.
Cell Signal ; 19(7): 1372-82, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17512700

RESUMEN

Mitogen-activated protein (MAP) kinase cascades are signal transduction pathways that play pivotal regulatory roles in the biosynthesis of pro-inflammatory cytokines. MAP kinase phosphatase (MKP)-1, an archetypal member of the MKP family, is essential for the dephosphorylation/deactivation of MAP kinases p38 and JNK. Earlier studies conducted using cultured immortalized macrophages provided compelling evidence indicating that MKP-1 deactivates p38 and JNK, thereby limiting pro-inflammatory cytokine biosynthesis in innate immune cells exposed to microbial components. Recent studies employing MKP-1 knockout mice have confirmed the central function of MKP-1 in the feedback control of p38 and JNK activity as well as the crucial physiological function of MKP-1 as a negative regulator of the synthesis of pro-inflammatory cytokines in vivo. MKP-1 was shown to be a major feedback regulator of the innate immune response and to play a critical role in preventing septic shock and multi-organ dysfunction during pathogenic infection. In this review, we will update the studies on the biochemical properties and the regulation of MKP-1, and summarize our understanding on the physiological function of this key phosphatase in the innate immune response.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Inmunidad Innata/inmunología , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Proteínas de Ciclo Celular/química , Citocinas/biosíntesis , Fosfatasa 1 de Especificidad Dual , Humanos , Proteínas Inmediatas-Precoces/química , Factores Inmunológicos/metabolismo , Inflamación/microbiología , Fosfoproteínas Fosfatasas/química , Proteína Fosfatasa 1 , Proteínas Tirosina Fosfatasas/química
15.
Life Sci ; 83(19-20): 671-80, 2008 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-18845168

RESUMEN

AIMS: We have previously shown that glucocorticoids induce the expression of MAP kinase phosphatase (Mkp)(a)-1 in innate immune cells. Since Mkp-1 is a critical negative regulator of the innate immune response, we hypothesize that Mkp-1 plays a significant role in the anti-inflammatory action of glucocorticoids. The specific aim of the present study is to understand the role of Mkp-1 in the anti-inflammatory function of glucocorticoids. MAIN METHODS: Wild-type and Mkp-1(-/-) mice were treated with different doses of dexamethasone and then challenged with different doses of lipopolysaccharide (LPS). The survival and blood cytokines were assessed. The effects of dexamethasone on cytokine production in wild-type and Mkp-1(-/-) primary macrophages ex vivo were also examined. KEY FINDINGS: We found that dexamethasone induced the expression of Mkp-1 in vivo. Dexamethasone treatment completely protected wild-type mice from the mortality caused by a relatively high dose of LPS. However, dexamethasone treatment offered only a partial protection to Mkp-1(-/-) mice. Dexamethasone attenuated TNF-alpha production in both wild-type and Mkp-1(-/-) mice challenged with LPS, although TNF-alpha production in Mkp-1(-/-) mice was significantly more robust than that in wild-type mice. Dexamethasone pretreatment shortened the duration of p38 and JNK activation in LPS-stimulated wild-type macrophages, but had little effect on p38 or JNK activation in similarly treated Mkp-1(-/-) macrophages. SIGNIFICANCE: Our results indicate that the inhibition of p38 and JNK activities by glucocorticoids is mediated by enhanced Mkp-1 expression. These results demonstrate that dexamethasone exerts its anti-inflammatory effects through both Mkp-1-dependent and Mkp-1-indepent mechanisms.


Asunto(s)
Antiinflamatorios/farmacología , Dexametasona/farmacología , Fosfatasa 1 de Especificidad Dual/fisiología , Endotoxemia/enzimología , Endotoxemia/prevención & control , Animales , Northern Blotting , Western Blotting , Citocinas/biosíntesis , Fosfatasa 1 de Especificidad Dual/genética , Activación Enzimática/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Lipopolisacáridos/toxicidad , Pulmón/citología , Pulmón/efectos de los fármacos , Pulmón/enzimología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/enzimología , Ratones , Ratones Noqueados , Bazo/citología , Bazo/efectos de los fármacos , Bazo/enzimología
16.
J Mol Med (Berl) ; 84(5): 405-15, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16385419

RESUMEN

Triptolide is a compound extracted from the Chinese herb Tripterygium wilfordii Hook. f. Triptolide has potent anticancer activity. However, the mechanisms by which triptolide exerts its anticancer activities remain unclear. To explore the molecular mechanisms involved in the anticancer activity of triptolide, we have examined the effect of triptolide on the growth of pancreatic carcinoma PANC-1 and cervical adenocarcinoma HeLa cells. We found that treatment of both HeLa and PANC-1 cells with triptolide potently suppressed cell growth and induced apoptosis, indicated by nuclear fragmentation and blebbing. In both HeLa and PANC-1 cells, apoptosis induced by triptolide was associated with activation of both caspase-3 and caspase-8, and cleavage of poly(ADP-ribose) polymerase and Bid. Moreover, in HeLa cells, caspase-9 is also significantly activated in response to triptolide. Overexpression of Bcl-2 in HeLa cells substantially attenuated triptolide-induced apoptosis. Interestingly, substitution of the 14-OH of triptolide with an acetyl group abrogated both its anticancer and its antiinflammatory activities. Our studies suggest that triptolide may exert its anticancer effects by initiating apoptosis through both death-receptor- and mitochondria-mediated pathways. Our results indicate that both the apoptosis-promoting and the antiinflammatory activities of triptolide depend on the 14-OH group.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Apoptosis/efectos de los fármacos , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Caspasas/efectos de los fármacos , Diterpenos/química , Diterpenos/farmacología , Fenantrenos/química , Fenantrenos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos Alquilantes/química , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/efectos de los fármacos , Carcinoma/tratamiento farmacológico , Carcinoma/patología , Caspasas/metabolismo , Activación Enzimática/efectos de los fármacos , Compuestos Epoxi , Células HeLa , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-bcl-2/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas
17.
Mol Cell Biol ; 37(13)2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28416635

RESUMEN

The oncogenic transcription factor FoxM1 plays a vital role in cell cycle progression, is activated in numerous human malignancies, and is linked to chromosome instability. We characterize here a cullin 4-based E3 ubiquitin ligase and its substrate receptor, VprBP/DCAF1 (CRL4VprBP), which we show regulate FoxM1 ubiquitylation and degradation. Paradoxically, we also found that the substrate receptor VprBP is a potent FoxM1 activator. VprBP depletion reduces expression of FoxM1 target genes and impairs mitotic entry, whereas ectopic VprBP expression strongly activates a FoxM1 transcriptional reporter. VprBP binding to CRL4 is reduced during mitosis, and our data suggest that VprBP activation of FoxM1 is ligase independent. This implies a nonproteolytic activation mechanism that is reminiscent of, yet distinct from, the ubiquitin-dependent transactivation of the oncoprotein Myc by other E3s. Significantly, VprBP protein levels were upregulated in high-grade serous ovarian patient tumors, where the FoxM1 signature is amplified. These data suggest that FoxM1 abundance and activity are controlled by VprBP and highlight the functional repurposing of E3 ligase substrate receptors independent of the ubiquitin system.


Asunto(s)
Proteínas Portadoras/metabolismo , Cistadenocarcinoma Seroso/metabolismo , Proteína Forkhead Box M1/metabolismo , Neoplasias Ováricas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Portadoras/genética , Ciclo Celular , Inestabilidad Cromosómica , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patología , Femenino , Proteína Forkhead Box M1/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Proteínas Serina-Treonina Quinasas , Proteolisis , Células Tumorales Cultivadas , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
18.
Cell Rep ; 20(13): 3212-3222, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-28954236

RESUMEN

The oncogenic AKT kinase is a key regulator of apoptosis, cell growth, and cell-cycle progression. Despite its important role in proliferation, it remains largely unknown how AKT is mechanistically linked to the cell cycle. We show here that cyclin F, a substrate receptor F-box protein for the SCF (Skp1/Cul1/F-box) family of E3 ubiquitin ligases, is a bona fide AKT substrate. Cyclin F expression oscillates throughout the cell cycle, a rare feature among the 69 human F-box proteins, and all of its known substrates are involved in proliferation. AKT phosphorylation of cyclin F enhances its stability and promotes assembly into productive E3 ligase complexes. Importantly, expression of mutant versions of cyclin F that cannot be phosphorylated by AKT impair cell-cycle entry. Our data suggest that cyclin F transmits mitogen signaling through AKT to the core cell-cycle machinery. This discovery has potential implications for proliferative control in malignancies where AKT is activated.


Asunto(s)
Ciclo Celular/fisiología , Ciclinas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Fosforilación , Transducción de Señal
19.
PLoS One ; 11(1): e0147113, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26760500

RESUMEN

There is currently tremendous interest in developing anti-cancer therapeutics targeting cell signaling pathways important for both cancer cell metabolism and growth. Several epidemiological studies have shown that diabetic patients taking metformin have a decreased incidence of pancreatic cancer. This has prompted efforts to evaluate metformin, a drug with negligible toxicity, as a therapeutic modality in pancreatic cancer. Preclinical studies in cell line xenografts and one study in patient-derived xenograft (PDX) models were promising, while recently published clinical trials showed no benefit to adding metformin to combination therapy regimens for locally advanced and metastatic pancreatic cancer. PDX models in which patient tumors are directly engrafted into immunocompromised mice have been shown to be excellent preclinical models for biomarker discovery and therapeutic development. We evaluated the response of four PDX tumor lines to metformin treatment and found that all four of our PDX lines were resistant to metformin. We found that the mechanisms of resistance may occur through lack of sustained activation of adenosine monophosphate-activated protein kinase (AMPK) or downstream reactivation of the mammalian target of rapamycin (mTOR). Moreover, combined treatment with metformin and mTOR inhibitors failed to improve responses in cell lines, which further indicates that metformin alone or in combination with mTOR inhibitors will be ineffective in patients, and that resistance to metformin may occur through multiple pathways. Further studies are required to better understand these mechanisms of resistance and inform potential combination therapies with metformin and existing or novel therapeutics.


Asunto(s)
Hipoglucemiantes/farmacología , Metformina/farmacología , Neoplasias Pancreáticas/patología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Expresión Génica , Humanos , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas S6 Ribosómicas 70-kDa , Transducción de Señal , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Am J Transl Res ; 1(3): 267-82, 2009 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-19956437

RESUMEN

Tripterygium wilfordii Hook F. has been used for centuries in traditional Chinese medicine to treat rheumatoid arthritis, an autoimmune disease associated with increased production of the pro-inflammatory cytokine, tumor necrosis factor (TNF)-alpha. Triptolide is a compound originally purified from T. wilfordii Hook F. and has potent anti-inflammatory and immunosuppressant activities. In this study, we investigated the effect of triptolide on the global gene expression patterns of macrophages treated with lipopolysaccharide (LPS). We found that LPS stimulation resulted in >5-fold increase in expression of 117 genes, and triptolide caused a >50% inhibition in 47 of the LPS-inducible 117 genes. A large portion of the genes that were strongly induced by LPS and significantly inhibited by triptolide were pro-inflammatory cytokine and chemokine genes, including TNF-alpha, IL-1beta, and IL-6. Interestingly, LPS also induced the expression of micro-RNA-155 (miR-155) precursor, BIC, which was inhibited by triptolide. Confirming the cDNA array results, we demonstrated that triptolide blocked the induction of these pro-inflammatory cytokines as well as miR-155 in a dose-dependent manner. Profound inhibition of pro-inflammatory cytokine expression was observed at concentrations as low as 10-50 nM. However, triptolide neither inhibited the phosphorylation or degradation of IkappaBalpha after LPS stimulation, nor affected the DNA-binding activity of NF-kappaB. Surprisingly, we found that triptolide not only inhibited NF-kappaB-regulated reporter transcription, but also dramatically blocked the activity of other transcription factors. Our study offers a plausible explanation of the therapeutic mechanism of T. wilfordii Hook F.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA