Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(34): e2305604120, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37585465

RESUMEN

Electrochemical conversion of N2 into ammonia presents a sustainable pathway to produce hydrogen storage carrier but yet requires further advancement in electrocatalyst design and electrolyzer integration. This technology suffers from low selectivity and yield owing to the extremely strong N≡N bond and the exceptionally low solubility of N2 in aqueous systems. A high NH3 synthesis performance is restricted by the high activation energy of N≡N bond and the supply insufficiency of N2 to active sites. This paper describes the introduction of electron-rich Bi0 sites into Ag catalysts with a high-pressure electrolyzer that enables a dramatically enhanced Faradaic efficiency of 44.0% and yield of 28.43 µg cm-2 h-1 at 4.0 MPa. Combined with density functional theory results, in situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy demonstrates that N2 reduction reaction follows an associative mechanism, in which a high coverage of N-N bond and -NH2 intermediates suggest electron-rich Bi0 boosts sound activation of N2 molecules and low hydrogenation barrier. The proposed strategy of engineering electrochemical catalysts and devices provides powerful guidelines for achieving industrial-level green ammonia production.

2.
J Hepatol ; 80(6): 868-881, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38311121

RESUMEN

BACKGROUND & AIMS: Persons with chronic HBV infection coinfected with HIV experience accelerated progression of liver fibrosis compared to those with HBV monoinfection. We aimed to determine whether HIV and its proteins promote HBV-induced liver fibrosis in HIV/HBV-coinfected cell culture models through HIF-1α and TGF-ß1 signaling. METHODS: The HBV-positive supernatant, purified HBV viral particles, HIV-positive supernatant, or HIV viral particles were directly incubated with cell lines or primary hepatocytes, hepatic stellate cells, and macrophages in mono or 3D spheroid coculture models. Cells were incubated with recombinant cytokines and HIV proteins including gp120. HBV sub-genomic constructs were transfected into NTCP-HepG2 cells. We also evaluated the effects of inhibitor of HIF-1α and HIV gp120 in a HBV carrier mouse model that was generated via hydrodynamic injection of the pAAV/HBV1.2 plasmid into the tail vein of wild-type C57BL/6 mice. RESULTS: We found that HIV and HIV gp120, through engagement with CCR5 and CXCR4 coreceptors, activate AKT and ERK signaling and subsequently upregulate hypoxia-inducible factor-1α (HIF-1α) to increase HBV-induced transforming growth factor-ß1 (TGF-ß1) and profibrogenic gene expression in hepatocytes and hepatic stellate cells. HIV gp120 exacerbates HBV X protein-mediated HIF-1α expression and liver fibrogenesis, which can be alleviated by inhibiting HIF-1α. Conversely, TGF-ß1 upregulates HIF-1α expression and HBV-induced liver fibrogenesis through the SMAD signaling pathway. HIF-1α small-interfering RNA transfection or the HIF-1α inhibitor (acriflavine) blocked HIV-, HBV-, and TGF-ß1-induced fibrogenesis. CONCLUSIONS: Our findings suggest that HIV coinfection exacerbates HBV-induced liver fibrogenesis through enhancement of the positive feedback between HIF-1α and TGF-ß1 via CCR5/CXCR4. HIF-1α represents a novel target for antifibrotic therapeutic development in HBV/HIV coinfection. IMPACT AND IMPLICATIONS: HIV coinfection accelerates the progression of liver fibrosis compared to HBV monoinfection, even among patients with successful suppression of viral load, and there is no sufficient treatment for this disease process. In this study, we found that HIV viral particles and specifically HIV gp120 promote HBV-induced hepatic fibrogenesis via enhancement of the positive feedback between HIF-1α and TGF-ß1, which can be ameliorated by inhibition of HIF-1α. These findings suggest that targeting the HIF-1α pathway can reduce liver fibrogenesis in patients with HIV and HBV coinfection.


Asunto(s)
Coinfección , Infecciones por VIH , Virus de la Hepatitis B , Subunidad alfa del Factor 1 Inducible por Hipoxia , Cirrosis Hepática , Transducción de Señal , Factor de Crecimiento Transformador beta1 , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Cirrosis Hepática/metabolismo , Cirrosis Hepática/virología , Cirrosis Hepática/patología , Humanos , Infecciones por VIH/complicaciones , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , Virus de la Hepatitis B/genética , Coinfección/virología , Ratones Endogámicos C57BL , Hepatitis B Crónica/complicaciones , Hepatitis B Crónica/metabolismo , Hepatitis B Crónica/patología , Hepatitis B Crónica/virología , Proteína gp120 de Envoltorio del VIH/metabolismo , Hepatocitos/metabolismo , Hepatocitos/virología , Hepatocitos/patología , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/virología , Modelos Animales de Enfermedad , Células Hep G2 , Masculino
3.
J Org Chem ; 89(4): 2440-2447, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38306296

RESUMEN

Aromatic C-H oxygenation is important in both industrial production and organic synthesis. Here we report a metal-free approach for phenol oxygenation with water as the oxygen source using oxoammonium salts as the renewable oxidant. Employing this protocol, various alkyl-substituted phenols were converted into benzoquinones in yields of 59-98%. On the basis of 18O-labeling and kinetic studies, the hydroxy-oxoammonium adduct was proposed to attack the aromatic ring similarly to electrophilic aromatic substitution. We suppose that the findings described here not only provide an efficient and highly selective protocol for aromatic C-H oxygenation but also may encourage further developments of possible transition-metal-free catalytic methods.

4.
Environ Res ; 249: 118428, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325788

RESUMEN

Polyethelene terephthalate (PET) is a well-known thermoplastic, and recycling PET waste is important for the natural environment and human health. This study provides a comprehensive overview of the recycling and reuse of PET waste through energy recovery and physical, chemical, and biological recycling. This article summarizes the recycling methods and the high-value products derived from PET waste, specifically detailing the research progress on regenerated PET prepared by the mechanical recycling of fiber/yarn, fabric, and composite materials, and introduces the application of PET nanofibers recycled by physical dissolution and electrospinning in fields such as filtration, adsorption, electronics, and antibacterial materials. This article explains the energy recovery of PET through thermal decomposition and comprehensively discusses various chemical recycling methods, including the reaction mechanisms, catalysts, conversion efficiencies, and reaction products, with a brief introduction to PET biodegradation using hydrolytic enzymes provided. The analysis and comparison of various recycling methods indicated that the mechanical recycling method yielded PET products with a wide range of applications in composite materials. Electrospinning is a highly promising recycling strategy for fabricating recycled PET nanofibers. Compared to other methods, physical recycling has advantages such as low cost, low energy consumption, high value, simple processing, and environmental friendliness, making it the preferred choice for the recycling and high-value utilization of waste PET.


Asunto(s)
Tereftalatos Polietilenos , Reciclaje , Tereftalatos Polietilenos/química , Reciclaje/métodos , Biodegradación Ambiental
5.
J Nanobiotechnology ; 22(1): 376, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926780

RESUMEN

Tissue regeneration technology has been rapidly developed and widely applied in tissue engineering and repair. Compared with traditional approaches like surgical treatment, the rising gene therapy is able to have a durable effect on tissue regeneration, such as impaired bone regeneration, articular cartilage repair and cancer-resected tissue repair. Gene therapy can also facilitate the production of in situ therapeutic factors, thus minimizing the diffusion or loss of gene complexes and enabling spatiotemporally controlled release of gene products for tissue regeneration. Among different gene delivery vectors and supportive gene-activated matrices, advanced gene/drug nanocarriers attract exceptional attraction due to their tunable physiochemical properties, as well as excellent adaptive performance in gene therapy for tissue regeneration, such as bone, cartilage, blood vessel, nerve and cancer-resected tissue repair. This paper reviews the recent advances on nonviral-mediated gene delivery systems with an emphasis on the important role of advanced nanocarriers in gene therapy and tissue regeneration.


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética , Regeneración , Ingeniería de Tejidos , Andamios del Tejido , Humanos , Animales , Terapia Genética/métodos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Nanopartículas/química , Portadores de Fármacos/química , Vectores Genéticos
6.
Compr Rev Food Sci Food Saf ; 23(3): e13362, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38720585

RESUMEN

Fermentation is a traditional method utilized for vegetable preservation, with microorganisms playing a crucial role in the process. Nowadays, traditional spontaneous fermentation methods are widely employed, which excessively depend on the microorganisms attached to the surface of raw materials, resulting in great difficulties in ideal control over the fermentation process. To achieve standardized production and improve product quality, it is essential to promote inoculated fermentation. In this way, starter cultures can dominate the fermentation processes successfully. Unfortunately, inoculated fermentation has not been thoroughly studied and applied. Therefore, this paper provides a systematic review of the potential upgrading strategy of vegetable fermentation technology. First, we disclose the microbial community structures and succession rules in some typical spontaneously fermented vegetables to comprehend the microbial fermentation processes well. Then, internal and external factors affecting microorganisms are explored to provide references for the selection of fermented materials and conditions. Besides, we widely summarize the potential starter candidates with various characteristics isolated from spontaneously fermented products. Subsequently, we exhibited the inoculated fermentation strategies with those isolations. To optimize the product quality, not only lactic acid bacteria that lead the fermentation, but also yeasts that contribute to aroma formation should be combined for inoculation. The inoculation order of the starter cultures also affects the microbial fermentation. It is equally important to choose a proper processing method to guarantee the activity and convenience of starter cultures. Only in this way can we achieve the transition from traditional spontaneous fermentation to modern inoculated fermentation.


Asunto(s)
Fermentación , Verduras , Bacterias , Alimentos Fermentados/microbiología , Microbiología de Alimentos/métodos , Microbiota , Verduras/microbiología , Levaduras
7.
Circulation ; 145(9): 675-687, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35189703

RESUMEN

BACKGROUND: High blood cholesterol accelerates the progression of atherosclerosis, which is an asymptomatic process lasting for decades. Rupture of atherosclerotic plaques induces thrombosis, which results in myocardial infarction or stroke. Lowering cholesterol levels is beneficial for preventing atherosclerotic cardiovascular disease. METHODS: Low-density lipoprotein (LDL) receptor (LDLR) was used as bait to identify its binding proteins in the plasma, and the coagulation factor prekallikrein (PK; encoded by the KLKB1 gene) was revealed. The correlation between serum PK protein content and lipid levels in young Chinese Han people was then analyzed. To investigate the effects of PK ablation on LDLR and lipid levels in vivo, we genetically deleted Klkb1 in hamsters and heterozygous Ldlr knockout mice and knocked down Klkb1 using adeno-associated virus-mediated shRNA in rats. The additive effect of PK and proprotein convertase subtilisin/kexin 9 inhibition also was evaluated. In addition, we applied the anti-PK neutralizing antibody that blocked the PK and LDLR interaction in mice. Mice lacking both PK and apolipoprotein e (Klkb1-/-Apoe-/-) were generated to assess the role of PK in atherosclerosis. RESULTS: PK directly bound LDLR and induced its lysosomal degradation. The serum PK concentrations positively correlated with LDL cholesterol levels in 198 young Chinese Han adults. Genetic depletion of Klkb1 increased hepatic LDLR and decreased circulating cholesterol in multiple rodent models. Inhibition of proprotein convertase subtilisin/kexin 9 with evolocumab further decreased plasma LDL cholesterol levels in Klkb1-deficient hamsters. The anti-PK neutralizing antibody could similarly lower plasma lipids through upregulating hepatic LDLR. Ablation of Klkb1 slowed the progression of atherosclerosis in mice on Apoe-deficient background. CONCLUSIONS: PK regulates circulating cholesterol levels through binding to LDLR and inducing its lysosomal degradation. Ablation of PK stabilizes LDLR, decreases LDL cholesterol, and prevents atherosclerotic plaque development. This study suggests that PK is a promising therapeutic target to treat atherosclerotic cardiovascular disease.


Asunto(s)
Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , LDL-Colesterol/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/prevención & control , Precalicreína/deficiencia , Receptores de LDL/metabolismo , Animales , Aterosclerosis/genética , LDL-Colesterol/genética , Lisosomas/genética , Lisosomas/metabolismo , Ratones , Ratones Noqueados , Placa Aterosclerótica/genética , Precalicreína/metabolismo , Proteolisis , Receptores de LDL/genética
8.
J Am Chem Soc ; 145(3): 1548-1556, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36637214

RESUMEN

Poly(ethylene oxide) has been widely investigated as a potential separator for solid-state lithium metal batteries. However, its applications were significantly restricted by low ionic conductivity and a narrow electrochemical stability window (<4.0 V vs Li/Li+) at room temperature. Herein, a novel molecular self-assembled ether-based polyrotaxane electrolyte was designed using different functional units and prepared by threading cyclic 18-crown ether-6 (18C6) to linear poly(ethylene glycol) (PEG) via intermolecular hydrogen bond and terminating with hexamethylene diisocyanate trimer (HDIt), which was strongly confirmed by local structure-sensitive solid/liquid-state nuclear magnetic resonance (NMR) techniques. The designed electrolyte has shown an obviously increased room-temperature ionic conductivity of 3.48 × 10-4 S cm-1 compared to 1.12 × 10-5 S cm-1 without assembling polyrotaxane functional units, contributing to the enhanced cycling stability of batteries with both LiFePO4 and LiNi0.8Co0.15Al0.05O2 cathode materials. This advanced molecular self-assembled strategy provides a new paradigm in designing solid polymer electrolytes with demanded performance for lithium metal batteries.

9.
BMC Biotechnol ; 23(1): 33, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644483

RESUMEN

Dopamine is high-value compound of pharmaceutical interest, but its industrial scale production mostly focuses on chemical synthesis, possessing environment pollution. Bio-manufacturing has caused much attention for its environmental characteristic. Resting cells were employed to as biocatalysts with extraordinary advantages like offering stable surroundings, the inherent presence of expensive cofactors. In this study, whole-cell bioconversion was employed to convert dopa to dopamine. To increase the titer and yield of dopamine production through whole-cell catalysis, three kinds of aromatic amino acid transport protein, AroP, PheP and TyrP, were selected to be co-expressed. The effects of the concentration of L-dopa, pyridoxal-5'- phosphate (PLP), reaction temperature and pH were characterized for improvement of bioconversion. Under optimal conditions, dopamine titer reached 1.44 g/L with molar yield of 46.3%, which is 6.62 times than that of initial conditions. The catalysis productivity of recombinant E. coli co-expressed L-dopa decarboxylase(DDC) and AroP was further enhanced by repeated cell recycling, which maintained over 50% of its initial ability with eight consecutive catalyses. This study was the first to successfully bioconversion of dopamine by whole-cell catalysis. This research provided reference for whole-cell catalysis which is hindered by cell membrane.


Asunto(s)
Dopamina , Levodopa , Escherichia coli/genética , Proteínas Portadoras , Catálisis
10.
Bioconjug Chem ; 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36896731

RESUMEN

Regulation of gene expression is conducive to understanding the physiological roles of specific genes and provides therapeutic potentials, which however still remains a great challenge. Nonviral carriers have some advantages for gene delivery compared to traditional physical delivery strategies, but they often fail to control the delivery of genes in targeting regions, and thus lead to off-target side effects. Although endogenous biochemical signal-responsive carriers have been used to improve the transfection efficiency, their selectivity and specificity are still poor because of the coexistence of biochemical signals in both normal tissues and disease sites. In contrast, light-responsive carriers can be adopted to precisely control gene transgenic behaviors at the specified locations and time, thus reducing the off-target gene editing at nontarget positions. Particularly, the near-infrared (NIR) light has better tissue penetration depth and lower phototoxicity than ultraviolet and visible light sources, showing great promise for intracellular gene expression regulation. In this review, we summarize the recent progress of NIR photoresponsive nanotransducers for precision regulation of gene expression. These nanotransducers can achieve controlled gene expression via three different mechanisms (photothermal activation, photodynamic regulation, and NIR photoconversion) to allow various applications, such as gene therapy of cancer, which will be discussed in detail. A conclusion and discussion of the challenges and outlook will be given at the end of this review.

11.
Chemistry ; 29(5): e202203051, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36263903

RESUMEN

The discovery of enantioselective desymmetrization reactions to provide practical synthesis of enantio-enriched atropisomeric biaryls is a challenging topic in the field of asymmetric catalysis. Herein, we report a highly enantioselective desymmetrization reaction for the synthesis of axially chiral biaryl N-oxides by atroposelective C-H iodination by using Pd(II) coordinated by N-benzoyl-l-phenylalanine as a chiral catalyst at room temperature. A broad range of products were obtained in high yields (up to 99 %) with excellent enantioselectivities (up to 98 % ee). The products could be synthesized in gram scale, one of which was proved to be a powerful organocatalyst in asymmetric allylation reaction. Mechanistic evidence as well as DFT calculations point towards the factors that lead to high reactivity and excellent enantiocontrol in this reaction.


Asunto(s)
Halogenación , Paladio , Estructura Molecular , Estereoisomerismo , Catálisis
12.
Chemistry ; 29(31): e202300106, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-36960548

RESUMEN

The utilization of CO2 as a non-toxic and cheap feedstock for C1 is a desirable route to achieve high value-added chemicals. In this context, we report a highly efficient ruthenium-catalyzed semi-hydrogenation reaction of CO2 -derived ureas. Various alkyl and aryl urea derivatives were successfully hydrogenated to obtain the corresponding recyclable amines and formamides (up to 97 % yield), highlighting the good substrate applicability of this method, which makes this method a sustainable alternative for the hydrogenation of CO2 to formamides in the presence of amines. In the meantime, we have discovered a new pathway that enables rapid hydrogenation of urea derivatives even at lower H2 pressure (<5 bar). This methodology might provide a new insight into the reduction functionalization of CO2 under mild pressure to form new C-N bond. Based on the control experiments and the observed intermediate products, we clarify the mechanism for selective semi-hydrogenation of ureas.

13.
Food Microbiol ; 109: 104136, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36309439

RESUMEN

Under stressful conditions, bacteria can enter viable but non-culturable (VBNC) state to survive. VBNC cells lost ability to grow on routine culture medium but are still alive and may revive in suitable conditions. The revived cells can consume nutrients or produce toxins, leading to food spoilage or human illness, posing great risk to food safety and public health. Previously, we have reported that high pressure carbon dioxide (HPCD), an environment-friendly sterilization technology, can induce VBNC formation. However, the underlying mechanism is unclear. By performing a comprehensive transcriptomic analysis, we revealed that HPCD initiated high expression of asr, encoding an acid shock protein, could promote VBNC formation of E. coli O157:H7. Quantitative reverse transcription PCR analysis suggested that high expression of asr (i) inhibited acid resistance (AR) systems, resulting in endogenous proton accumulation; (ii) inhibited hchA expression, a protein stabilizing factor. The two effects resulted in endogenous protein aggregation, which was highly correlated to VBNC formation. Accordingly, HPCD-stressed cells exhibited decreased efficiency of electron transfer chain and ATP production, which was also contributory to cytoplasmic protein aggregation. Taken together, HPCD-initiated high expression of Asr coupled with decreased ATP production led to protein aggregation, finally promoted the cells to enter VBNC state.


Asunto(s)
Escherichia coli O157 , Humanos , Dióxido de Carbono/farmacología , Agregado de Proteínas , Medios de Cultivo/farmacología , Adenosina Trifosfato
14.
BMC Musculoskelet Disord ; 24(1): 143, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823613

RESUMEN

BACKGROUND: Postoperative bone graft migration (PBGM) is a fairly rare spinal postoperative complication. Its occurrence after endoscopic surgery has rarely been reported in the literature so far. This is a case report of a 52-year-old male occurring PBGM into the thecal sac in the 8th days after an endoscopic lumbar interbody fusion (ELIF), which can make surgeons more minded with such serious rare complication after BGM. CASE PRESENTATION: A 52-year-old male patient, underwent a L4-5 ELIF, presented with an acute radiculopathy on right leg and urinary incontinence in the 8th postoperative day. An emergency lumbar Computed Tomography(CT scan) and Magnetic Resonance Imaging (MRI) demonstrated bone graft migration into the thecal sac at the L4-5 level, and shifting down to the lower level. The revision surgery was performed at once successfully. Finally, the patient got well managed before discharge. CONCLUSION: Supported by this case report, we believe that PBGM into the thecal sac is a rare but horrible complication of ELIF. However, too much volume of bone graft and its posterior placement are more prone to developing this complication. Finally, we are not sure that the outcome presented in this study will be repeated in future cases.


Asunto(s)
Endoscopía , Fusión Vertebral , Masculino , Humanos , Persona de Mediana Edad , Endoscopía/efectos adversos , Endoscopía/métodos , Complicaciones Posoperatorias/diagnóstico por imagen , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/cirugía , Región Lumbosacra , Reoperación , Imagen por Resonancia Magnética , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Fusión Vertebral/efectos adversos , Fusión Vertebral/métodos , Resultado del Tratamiento
15.
Immunopharmacol Immunotoxicol ; 45(4): 469-478, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36650938

RESUMEN

Aim: Sepsis is an extremely complex, threatening and difficult-to-treat disease, which can occur at any age and under any underlying disease. RNF20 regulate NF-kappaB (NF-κB) signaling pathway and the transcription of inflammatory factors of target genes. Therefore, it is of great significance to study the function of RNF20 in the clinical treatment of sepsis and its underlying mechanisms.Methods: C57BL/6 mice were subjected to cecal ligation and puncture (CLP) surgery. THP-1 cells were induced with Lipopolysaccharide for 4 h.Results: RNF20 gene, mRNA expression and protein expression were reduced in patients with sepsis and mice with sepsis. Based on RNF20 deletion (RNF20-/-) mice, these were found to be increased inflammation reactions in RNF20-/- mice. However, the RNF20 human protein reduced inflammation reactions in mice with sepsis. In vitro model of sepsis, over-expression of RNF20 inhibited inflammation reactions by inducing Vitamin D Receptor (VDR), while down-regulation of RNF20 promoted inflammation reactions through the suppression of VDR. RNF20 protein was interlinked with VDR protein, and VDR protein was also interlinked with NLRP3. Furthermore, VDR promoted NLRP3 ubiquitination and reduced NLRP3 function in vitro model of sepsis.Conclusion: These studies demonstrate that RNF20 suppressed inflammation reactions in models with sepsis through NLRP3 inflammasome and NLRP3 ubiquitination by activating VDR.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Sepsis , Ubiquitina-Proteína Ligasas , Animales , Humanos , Ratones , Inflamasomas/metabolismo , Inflamación/genética , Ratones Endogámicos C57BL , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Sepsis/genética , Sepsis/tratamiento farmacológico , Ubiquitina-Proteína Ligasas/genética , Ratones Noqueados , Receptores de Calcitriol/metabolismo
16.
BMC Surg ; 23(1): 192, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407952

RESUMEN

BACKGROUND: Considering the high reoperation rate in degenerative lumbar spondylolisthesis (DLS) patients undergoing lumbar surgeries and controversial results on the risk factors for the reoperation, we performed a systematic review and meta-analysis to explore the reoperation rate and risk factors for the reoperation in DLS patients undergoing lumbar surgeries. METHODS: Literature search was conducted from inception to October 28, 2022 in Pubmed, Embase, Cochrane Library, and Web of Science. Odds ratio (OR) was used as the effect index for the categorical data, and effect size was expressed as 95% confidence interval (CI). Heterogeneity test was performed for each outcome effect size, and subgroup analysis was performed based on study design, patients, surgery types, follow-up time, and quality of studies to explore the source of heterogeneity. Results of all outcomes were examined by sensitivity analysis. Publication bias was assessed using Begg test, and adjusted using trim-and-fill analysis. RESULTS: A total of 39 cohort studies (27 retrospective cohort studies and 12 prospective cohort studies) were finally included in this systematic review and meta-analysis. The overall results showed a 10% (95%CI: 8%-12%) of reoperation rate in DLS patients undergoing lumbar surgeries. In surgery types subgroup, the reoperation rate was 11% (95%CI: 9%-13%) for decompression, 10% (95%CI: 7%-12%) for fusion, and 9% (95%CI: 5%-13%) for decompression and fusion. An increased risk of reoperation was found in patients with obesity (OR = 1.91, 95%CI: 1.04-3.51), diabetes (OR = 2.01, 95%CI: 1.43-2.82), and smoking (OR = 1.51, 95%CI: 1.23-1.84). CONCLUSIONS: We found a 10% of reoperation rate in DLS patients after lumbar surgeries. Obesity, diabetes, and smoking were risk factors for the reoperation.


Asunto(s)
Diabetes Mellitus , Fusión Vertebral , Estenosis Espinal , Espondilolistesis , Humanos , Reoperación/métodos , Espondilolistesis/cirugía , Estudios Retrospectivos , Estudios Prospectivos , Resultado del Tratamiento , Estenosis Espinal/cirugía , Descompresión Quirúrgica/métodos , Fusión Vertebral/métodos , Factores de Riesgo , Vértebras Lumbares/cirugía , Diabetes Mellitus/epidemiología , Diabetes Mellitus/cirugía , Obesidad/cirugía
17.
Food Control ; 145: 109401, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36186659

RESUMEN

During the pandemic of coronavirus disease 2019, the fact that frozen foods can carry the relevant virus raises concerns about the microbial safety of cold-chain foods. As a non-thermal processing technology, high pressure carbon dioxide (HPCD) is a potential method to reduce microbial load on cold-chain foods. In this study, we explored the microbial inactivation of low temperature (5-10 °C) HPCD (LT-HPCD) and evaluated its effect on the quality of prawn during freeze-chilled and frozen storage. LT-HPCD treatment at 6.5 MPa and 10 °C for 15 min could effectively inactivate E. coli (99.45%) and S. aureus (94.6%) suspended in 0.85% NaCl, SARS-CoV-2 Spike pseudovirus (>99%) and human coronavirus 229E (hCoV-229E) (>1-log virus tilter reduction) suspended in DMEM medium. The inactivation effect of LT-HPCD was weakened but still significant when the microorganisms were inoculated on the surface of food or package. LT-HPCD treatment at 6.5 MPa and 10 °C for 15 min achieved about 60% inactivation of total aerobic count while could maintain frozen state and quality of prawn. Moreover, LT-HPCD treated prawn exhibited significant slower microbial proliferation and no occurrence of melanosis compared with the untreated samples during chilled storage. A comprehensive quality investigation indicated that LT-HPCD treatment could maintain the color, texture and sensory of prawn during chilled or frozen storage. Consequently, LT-HPCD could improve the microbial safety of frozen prawn while maintaining its original quality, and could be a potential method for food industry to improve the microbial safety of cold-chain foods.

18.
Molecules ; 28(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36903607

RESUMEN

For the better standardization and widespread application of the determination method of carotenoids in both chili peppers and their products, this work reports for the first time the simultaneous determination of five main carotenoids, including capsanthin, zeaxanthin, lutein, ß-cryptoxanthin and ß-carotene in chili peppers and their products, with optimized extraction and the high-performance liquid chromatography (HPLC) method. All parameters in the methodological evaluation were found to be in good stability, recovery and accuracy compliance with the reference values; the R coefficients for the calibration curves were more than 0.998; and the LODs and LOQs varied from 0.020 to 0.063 and from 0.067 to 0.209 mg/L, respectively. The characterization of five carotenoids in chili peppers and their products passed all the required validation criteria. The method was applied in the determination of carotenoids in nine fresh chili peppers and seven chili pepper products.


Asunto(s)
Capsicum , beta Caroteno , beta Caroteno/análisis , Luteína/análisis , Zeaxantinas/análisis , Capsicum/química , Cromatografía Líquida de Alta Presión/métodos , beta-Criptoxantina/análisis , Carotenoides/química
19.
Compr Rev Food Sci Food Saf ; 22(4): 2728-2746, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37125461

RESUMEN

Bacterial spores are highly resilient and universally present on earth and can irreversibly enter the food chain to cause food spoilage or foodborne illness once revived to resume vegetative growth. Traditionally, extensive thermal processing has been employed to efficiently kill spores; however, the relatively high thermal load adversely affects food quality attributes. In recent years, the germination-inactivation strategy has been developed to mildly kill spores based on the circumstance that germination can decrease spore-resilient properties. However, the failure to induce all spores to geminate, mainly owing to the heterogeneous germination behavior of spores, hampers the success of applying this strategy in the food industry. Undoubtedly, elucidating the detailed germination pathway and underlying mechanism can fill the gap in our understanding of germination heterogeneity, thereby facilitating the development of full-scale germination regimes to mildly kill spores. In this review, we comprehensively discuss the mechanisms of spore germination of Bacillus and Clostridium species, and update the molecular basis of the early germination events, for example, the activation of germination receptors, ion release, Ca-DPA release, and molecular events, combined with the latest research evidence. Moreover, high hydrostatic pressure (HHP), an advanced non-thermal food processing technology, can also trigger spore germination, providing a basis for the application of a germination-inactivation strategy in HHP processing. Here, we also summarize the diverse germination behaviors and mechanisms of spores of Bacillus and Clostridium species under HHP, with the aim of facilitating HHP as a mild processing technology with possible applications in food sterilization. Practical Application: This work provides fundamental basis for developing efficient killing strategies of bacterial spores in food industry.


Asunto(s)
Manipulación de Alimentos , Esporas Bacterianas , Esporas Bacterianas/metabolismo
20.
Angew Chem Int Ed Engl ; 62(19): e202300122, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36892274

RESUMEN

Developing easily accessible descriptors is crucial but challenging to rationally design single-atom catalysts (SACs). This paper describes a simple and interpretable activity descriptor, which is easily obtained from the atomic databases. The defined descriptor proves to accelerate high-throughput screening of more than 700 graphene-based SACs without computations, universal for 3-5d transition metals and C/N/P/B/O-based coordination environments. Meanwhile, the analytical formula of this descriptor reveals the structure-activity relationship at the molecular orbital level. Using electrochemical nitrogen reduction as an example, this descriptor's guidance role has been experimentally validated by 13 previous reports as well as our synthesized 4 SACs. Orderly combining machine learning with physical insights, this work provides a new generalized strategy for low-cost high-throughput screening while comprehensive understanding the structure-mechanism-activity relationship.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA